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Multi-class classification is an important and on-going research subject in machine learning. In this
article, we propose a new support vector algorithm, called ν-K-SVCR, for multi-class classification
based on ν-SVM. ν-K-SVCR has parameters that enable us to control the numbers of support vectors
and margin errors effectively, which is helpful in improving the accuracy of each classifier. We give
some theoretical results concerning the significance of the parameters and show the robustness of
classifiers. In addition, we have examined the proposed algorithm on several benchmark data sets
and artificial data sets, and our preliminary experiments confirm our theoretical conclusions.
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1 INTRODUCTION

Multi-class classification, as an important problem in data mining and machine
learning, refers to the construction of an approximation F̂ of an unknown
function F defined from an input space X ⊂ RN onto an unordered set of
classes Y = {Θ1, · · · , ΘK} based on independently and identically distributed
(i.i.d.) data

T = {(xp, θp)}l
p=1 ⊂ X × Y. (1)
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Support vector machines (SVMs) is a useful tool for classification. At
present, most existing SVMs are restricted to binary classification. However,
in general, real world learning problems require examples to be mapped into
one of several possible classes. How to effectively extend binary SVMs to
multi-class classification is still an on-going research issue. Currently there
are roughly two types of SVM-based approaches to solve the multi-class clas-
sification problems. One is the “decomposition-reconstruction” architecture
approach [1, 5, 7, 9–12, 22] that makes direct use of binary SVMs to tackle
the tasks of multi-class classification, while the other is the “all-together” ap-
proach [3, 6, 14, 22, 23] that solves the multi-class classification problems by
considering all examples from all classes in one optimization formulation. In
this article, we propose a new algorithm for multi-class classification with
decomposition-reconstruction architecture.

The decomposition-reconstruction architecture approach first uses a decom-
position scheme to transform a K-partition F : X → Y into a series of di-
chotomizers f1, · · · , fL, and then uses a reconstruction scheme to fuse the out-
puts of all classifiers for a particular example and assign it to one of the K
classes.

Among the decomposition schemes frequently used, there are the ‘one-
against-all (1-a-a)’ method [5,22], the ‘one-against-one (1-a-1)’ method [11,12]
and the ‘error-correcting output code (ECOC)’ method [1, 7, 9, 10]. The 1-a-a
method constructs K binary SVM models with the ith one being trained by
labelling +1 to the examples in the ith class and −1 to all the other examples.
The 1-a-1 method requires K(K−1)/2 binary class machines, one for each pair
of classes. That is, the machine associated with the pair (i, j) concentrates on
the separation of class Θi and class Θj while ignoring all the other examples.
The ECOC method applies some ideas from the theory of error correcting
code to choose a collection of binary classifiers for training . Then the ECOC
method aggregates the results obtained by the binary classifiers to assign each
example to one of the K classes. The 1-a-1 method is reported to offer better
performance than the 1-a-a method empirically [1, 10, 13]. However, the 1-a-a
method has recently been pointed out to have as good performance as other
approaches [19].

The usual reconstruction schemes consist of voting, winner-takes-all and
tree-structure [18]. Other combinations are made by considering the estimates
of a posteriori probabilities for machines’ outputs or by adapting the SVM to
produce a posteriori class probabilities [16,17].

Recently, K-SVCR algorithm has been proposed by combining SV classifi-
cation and SV regression in [2]. The algorithm has the 1-versus-1-versus-rest
structure during the decomposition by using the mixture of the formulations
of SV classification and regression. In this article, we propose a new algorithm
called ν-K-SVCR which is based on ν-SV classification and ν-SV regression.
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Like K-SVCR, the new algorithm also requires K(K − 1)/2 binary classifiers,
and each makes the fusion of 1-a-1 and 1-a-a. However, in K-SVCR, the ac-
curacy parameter δ is chosen a priori (cf. (7)–(8) in [2]), while ν-K-SVCR
automatically minimizes the accuracy parameter ε (cf. (13)–(18)). In addi-
tion, the parameters ν1 and ν2 in ν-K-SVCR allow us to control the numbers
of support vectors and margin errors effectively, which is helpful in improving
the accuracy of each classifier. We give some theoretical results concerning the
meaning of the parameters and show the robustness of classifiers. Also, we
show that ν-K-SVCR will result in the same classifiers as those of K-SVCR by
choosing the parameters appropriately. Finally, we conduct numerical experi-
ments on several artificial data sets and benchmark data sets to demonstrate
the theoretical results and the good performance of ν-K-SVCR.

The rest of this article is organized as follows. We first give a brief account
of ν-SVM in Section 2. In Section 3, we present ν-K-SVCR algorithm and then
show two theoretical results on ν-K-SVCR concerning the meaning of param-
eters ν1 and ν2 and the outlier resistance property of classifiers. In addition,
we discuss the connection to K-SVCR. Section 4 gives numerical results to
verify the theoretical results and show the performance of ν-K-SVCR. Section
5 concludes the article.

2 ν-SVM

Support vector machines consist of a new class of learning algorithms that
are motivated by statistical theory [21]. To describe the basic idea of SVMs,
we consider the binary classification problem. Let {(xi, yi), i = 1, · · · , l} be
a training example set with the ith example xi ∈ X ⊆ RN belonging to one
of the two classes labelled by yi ∈ {+1,−1}. SVMs for classification are used
to construct a separating hyperplane f(x) in a high-dimensional feature space
F :

f(x) = sgn((w · φ(x)) + b), (2)

where φ : X → F is a nonlinear mapping transforming the examples in the
input space into the feature space. This separating hyperplane corresponds to
a linear separator in the feature space F which is equipped with the inner
product defined by

k(xi,xj) = (φ(xi) · φ(xj)), (3)

where k is a function called a kernel. When k satisfies the Mercer’s theorem, we
call it a Mercer kernel [15], and its typical choices include polynomial kernels
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k(x,y) = (x · y)d and Gaussian kernels k(x,y) = exp(−‖x − y‖2/(2σ2)),
where d ∈ N, σ > 0. The hypothesis space with kernel k is a reproducing
kernel Hilbert space (RKHS) H of functions defined over the domain X ⊂ RN

with k being the reproducing kernel, and H is a closed and bounded set [8].
Hence, it has the finite covering numbers. The kernels used in this article are
Mercer kernels.

An interesting type of SVM is ν-SVM developed in [20]. One of its main
features is that it has an adjustable regularization parameter ν which has the
following significance: ν is both an upper bound on the fraction of errors1

and a lower bound on the fraction of support vectors. Additionally, when the
example size goes to infinity, both fractions converge almost surely to ν under
general assumptions on the learning problems and the kernels used [20]. A
quadratic programming (QP) formulation of ν-SV classification is given as
follows: For ν ∈ (0, 1] and C > 0 chosen a priori,

min τ(w, b, ξ, ρ) :=
1
2
‖w‖2 + C(−νρ +

1
l

l∑

i=1

ξi) (4)

s.t. yi((w · φ(xi)) + b) ≥ ρ− ξi, (5)

ξi ≥ 0, i = 1, · · · , l, (6)

ρ ≥ 0. (7)

As to ν-SV regression, the estimate function is constructed by using Vapnik’s
ε-insensitive loss function

|y − f(x)|ε = max{0, |y − f(x)| − ε}, (8)

where y ∈ R is a target value. The associated QP problem to be solved is
written as

min τ(w, b, ϕ, ϕ̃, ε) :=
1
2
‖w‖2 + D(νε +

1
l

l∑

i=1

(ϕi + ϕ̃i)) (9)

s.t. −ε− ϕ̃i ≤ ((w · φ(xi)) + b)− yi ≤ ε + ϕi, (10)

ϕi, ϕ̃i ≥ 0, i = 1, · · · , l, (11)

where ν ∈ (0, 1] and D > 0 are parameters chosen a priori.

1In ν-SV regression, errors refer to the training examples lying outside the ε-tube. In ν-SV classifi-
cation, errors refer to margin errors including examples lying within the margin.
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3 THE ν-K-SVCR LEARNING MACHINE

3.1 The Formulation of ν-K-SVCR

Let the training set T be given by (1). For an arbitrary pair (Θj , Θk) ∈
Y × Y of classes, we wish to construct a decision function f(x) based on a
hyperplane similar to (2) which separates the two classes Θj and Θk as well as
the remaining classes. Without loss of generality, let examples xi, i = 1, · · · , l1,
and xi, i = l1+1, · · · , l1+ l2 belong to the two classes Θj and Θk which will be
labelled +1 and −1, respectively, and the remaining examples belong to the
other classes which will be labelled 0. Specifically, we wish to find a function
f(x) such that

f(xi) =





+1, i = 1, · · · , l1,
−1, i = l1 + 1, · · · , l1 + l2,
0, i = l1 + l2 + 1, · · · , l.

(12)

In the following, we denote l12 = l1 + l2 and l3 = l − l12.
For ν1, ν2 ∈ (0, 1] and C, D > 0 chosen a priori, combining ν-SV classification

and ν-SV regression, the ν-K-SVCR method solves the following optimization
problem:

min τ(w, b, ξ, ϕ, ϕ̃, ρ, ε)

:=
1
2
‖w‖2 + C(

1
l12

l12∑

i=1

ξi − ν1ρ) + D(
1
l3

l∑

i=l12+1

(ϕi + ϕ̃i) + ν2ε) (13)

s.t. yi · ((w · φ(xi)) + b) ≥ ρ− ξi, i = 1, · · · , l12, (14)

(w · φ(xi)) + b ≤ ε + ϕi, i = l12 + 1, · · · , l, (15)

(w · φ(xi)) + b ≥ −ε− ϕ̃i, i = l12 + 1, · · · , l, (16)

ξi, ϕi, ϕ̃i, ε ≥ 0, (17)

ρ ≥ ε. (18)

The ν-K-SVCR can be considered to include the ν-SV classification with yi =
±1 (cf.(14)) and the ν-SV regression with 0 being the only target value (cf.(15)
and (16)).

Introducing the dual variables αi ≥ 0, i = 1, · · · , l12, βi, β̃i ≥ 0, i =
l12 +1, · · · , l, µi ≥ 0, i = 1, · · · , l12, ηi, η̃i ≥ 0, i = l12 +1, · · · , l, ζ ≥ 0, ς ≥ 0,
we obtain the following formulation of Karush-Kuhn-Tucker (KKT) conditions
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for problem (13)–(18):

w =
l12∑

i=1

αiyiφ(xi)−
l∑

i=l12+1

(βi − β̃i)φ(xi), (19)

l12∑

i=1

αiyi −
l∑

i=l12+1

(βi − β̃i) = 0, (20)

C

l12
− µi − αi = 0, i = 1, · · · , l12, (21)

D

l3
− βi − ηi = 0, i = l12 + 1, · · · , l, (22)

D

l3
− β̃i − η̃i = 0, i = l12 + 1, · · · , l, (23)

l12∑

i=1

αi − Cν1 − ς = 0, (24)

l∑

i=l12+1

(βi + β̃i)−Dν2 + ζ − ς = 0, (25)

αi (yi · ((w · φ(xi)) + b)− ρ + ξi) = 0, i = 1, · · · , l12, (26)

βi ((w · φ(xi)) + b− ε− ϕi) = 0, i = l12 + 1, · · · , l, (27)

β̃i ((w · φ(xi)) + b + ε + ϕ̃i) = 0, i = l12 + 1, · · · , l, (28)

µiξi = 0, i = 1, · · · , l12, (29)

ηiϕi = 0, i = l12 + 1, · · · , l, (30)

η̃iϕ̃i = 0, i = l12 + 1, · · · , l, (31)

ζε = 0, (32)

ς(ρ− ε) = 0. (33)

By (19)–(33), the dual of problem (13)–(18) can be expressed as follows: For
ν1, ν2 ∈ (0, 1] chosen a priori,

min W (r) :=
1
2
rTHr

s.t. 0 ≤ riyi ≤ C

l12
, i = 1, · · · , l12,
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0 ≤ ri ≤ D

l3
, i = l12 + 1, · · · , l + l3,

l12∑

i=1

ri =
l∑

i=l12+1

ri −
l+l3∑

i=l+1

ri,

l12∑

i=1

riyi ≥ Cν1,

l+l3∑

i=l12+1

ri ≤ Dν2,

where

r := (α1y1, · · · , αl12yl12 , βl12+1, · · · , βl, β̃l12+1, · · · , β̃l)T ∈ Rl12+l3+l3 ,

H = HT :=




(k(xi,xj)) −(k(xi,xj)) (k(xi,xj))
−(k(xi,xj)) (k(xi,xj)) −(k(xi,xj))
(k(xi,xj)) −(k(xi,xj)) (k(xi,xj))


 ∈ R(l12+l3+l3)×(l12+l3+l3),

with

xi = xi−l3 , i = l + 1, · · · , l + l3.

Denote

vi =
{

αiyi, i = 1, · · · , l12,

β̃i − βi, i = l12 + 1, · · · , l. (34)

Then, by (19), w is written as

w =
l∑

i=1

viφ(xi), (35)

and the hyperplane decision function is given by

f(x) =





+1, if
∑

vi∈SV

vik(xi,x) + b ≥ ε,

−1, if
∑

vi∈SV

vik(xi,x) + b ≤ −ε,

0, otherwise,

(36)
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where SV = {vi|vi 6= 0}, or alternatively

f(x) = sgn(g(x) · |g(x)|ε), (37)

where

g(x) =
∑

vi∈SV

vik(xi,x) + b (38)

and | · |ε is defined by (8). In (35), vi will be nonzero only if the correspond-
ing constraint (14) or (15) or (16) is satisfied as an equality; the examples
corresponding to those vi’s are called support vectors (SVs).

To compute b and ρ, we consider two sets S±. S+ contains the SVs xi with
yi = 1 and 0 < vi < C

l12
, i = 1, · · · , l12, and S− contains the SVs xi with

yi = −1 and − C
l12

< vi < 0, i = 1, · · · , l12. For these examples in S±, we get
µi > 0 by (21) and then ξi = 0 by (29). Hence (14) becomes equality with
ξi = 0, and we get

∑

x∈S+

(w · φ(x)) + |S+|b− |S+|ρ = 0,

−
∑

x∈S−

(w · φ(x))− |S−|b− |S−|ρ = 0,

where |S+| and |S−| denote the number of examples in S+ and S−, respectively.
Solving these equations for b and ρ, and using (35) and (3), we obtain

b = −1
2
[

1
|S+|

∑

x∈S+

∑

vi∈SV

vik(xi,x) +
1
|S−|

∑

x∈S−

∑

vi∈SV

vik(xi,x)], (39)

ρ =
1
2
[

1
|S+|

∑

x∈S+

∑

vi∈SV

vik(xi,x)− 1
|S−|

∑

x∈S−

∑

vi∈SV

vik(xi,x)]. (40)

The value of ε can be calculated from (15) or (16) on the support vectors.

3.2 The Properties of ν-K-SVCR

In this subsection, we first show that the parameter ν in ν-K-SVCR has a
similar significance to that in ν-SVM [20]. Note that, since the ν-SVM in [20]
only aims at classifying examples into two classes, a margin error in [20] refers
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Figure 1. Working zones for a ν-K-SVCR in the feature space on a three-class problem.

to an example that is either misclassified or lying within the ρ-tube. Since our
aim is to classify examples into multiple classes, we will modify the definition
of margin errors. Namely, throughout this paper, the margin errors refer to two
kinds of training examples: For the examples in the two classes to be separated,
margin errors refer to the examples xi with ξi > 0, that is, the examples that
are either misclassified or lying within the ρ-tube; for the examples that are
not in either of the two classes, margin errors refer to the examples lying
outside the ε-tube. Specifically, the margin errors are the training examples
that belong to the set

{i : yig(xi) < ρ, i = 1, · · · , l12} ∪ {i : |g(xi)| > ε, i = l12 + 1, · · · , l}, (41)

where g(·) is defined by (38).
Figure 1 depicts the working zones for a ν-K-SVCR in the feature space on

a three-class problem: The ‘¦’, ‘◦’ and ‘∗’ represent the classes labelled by −1,
+1 and 0 respectively.

Examples with output −1: A, well-classified example (vi = 0); B, support
vector (vi ∈ (− C

l12
, 0)); X, margin error with label−1 (vi = − C

l12
) (X is regarded

as a margin error since we have yig(xi) ≥ ρ for this example, even if it is
labelled as −1, cf. (41)); Y, margin error with label 0 (vi = − C

l12
); Z, margin

error with label +1 (vi = C
l12

).
Examples with output +1: Similar to the above.
Examples with output 0: E, well-classified example (vi = 0); F, support

vector (vi ∈ (0, D
l3

)); G, support vector ( vi ∈ (−D
l3

, 0)); H, margin error (vi =
−D

l3
).

The fraction of margin errors is defined as the number of margin errors
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divided by the total number of examples, i.e.,

FME :=
1
l
{|{i : yig(xi) < ρ, i = 1, · · · , l12}|+ |{i : |g(xi)| > ε, i = l12 + 1, · · · , l}|} ,

(42)
where g(·) is defined by (38).

Theorem 3.1 Suppose ν-K-SVCR is applied to some data set, and the re-
sulting ε and ρ satisfy ρ > ε > 0. Then the following statements hold:

(i). ν1l12+ν2l3
l is an upper bound on the fraction of margin errors.

(ii). ν1l12+ν2l3
l is a lower bound on the fraction of SVs.

(iii). Suppose the data are i.i.d. from a distribution P (x, θ) = P (x)P (θ|x)
such that none of P (x, θ = Θ1), · · · , P (x, θ = ΘK) contain any discrete com-
ponent. Suppose that the kernel is analytic and non-constant. With probability
1, asymptotically, ν1l12+ν2l3

l equals both the fraction of SVs and the fraction of
margin errors.

Proof (i). Suppose the numbers of margin errors in examples {(xi, θi)}l12
i=1

and {(xi, θi)}l
i=l12+1 are m1 and m2, respectively. If an example belonging to

{(xi, θi)}l12
i=1 is a margin error, then the corresponding slack variable satisfies

ξi > 0, which along with (29) implies µi = 0. Hence by (21), the examples
with ξi > 0 satisfy αi = C

l12
. On the other hand, since ρ > ε, (33) yields ς = 0.

Hence (24) becomes

l12∑

i=1

αi = Cν1. (43)

Therefore, at most ν1l12 examples in {(xi, θi)}l12
i=1 can have αi = C

l12
. Thus we

obtain

m1 ≤ ν1l12. (44)

If an example belonging to {(xi, θi)}l
i=l12+1 is a margin error, then the cor-

responding dual variables satisfy ϕi > 0 or ϕ̃i > 0. By (30) or (31), we have
ηi = 0 or η̃i = 0 correspondingly. By (22) and (23), we get βi = D

l3
or β̃i = D

l3
.

On the other hand, ρ > ε > 0 implies ζ = 0 and ς = 0. So (25) becomes

l∑

i=l12+1

(βi + β̃i) = Dν2. (45)

Since βiβ̃i = 0, (45) implies that at most ν2l3 examples in {(xi, θi)}l
i=l12+1 can



A NEW MULTI-CLASS SUPPORT VECTOR ALGORITHM 11

have βi = D
l3

or β̃i = D
l3

. Thus we obtain

m2 ≤ ν2l3. (46)

Combining (44) and (46) shows that ν1l12+ν2l3
l is an upper bound on the frac-

tion of margin errors.
(ii). If an example belonging to {(xi, θi)}l12

i=1 is a support vector, it can
contribute at most C

l12
to the left-hand side of (43). Hence there must be

at least ν1l12 SVs. Similarly, for the examples in {(xi, θi)}l
i=l12+1, by (45) and

noting βiβ̃i = 0, we can deduce that there must be at least ν2l3 SVs. Therefore,
ν1l12+ν2l3

l is an lower bound on the fraction of SVs.
(iii). We prove it by showing that, asymptotically, the probability of ex-

amples on the edges of ρ-tube or ε-tube (that is, the examples that satisfy
yig(xi) = ρ, i = 1, · · · , l12, or g(xi) = ±ε, i = l12 + 1, · · · , l) vanishes. It
follows from the condition on P (x, θ) that, apart from some set of measure
zero, the K class distributions are absolutely continuous. Since the kernel is
analytic and non-constant, it cannot be constant on any open set. Hence all
the functions g constituting the argument of the sign in the decision func-
tion (cf. (37)) cannot be constant on any open set. Therefore, the distribution
over x can be transformed into the distributions such that for all t ∈ R,
limγ→0 P (|g(x)+ t| < γ) = 0. On the other hand, since the class of these func-
tions has well-behaved covering numbers, we get uniform convergence, i.e., for
all γ > 0 and t ∈ R,

sup
g
|P (|g(x) + t| < γ)− P̂l(|g(x) + t| < γ)| P→ 0, l →∞,

where P̂l is the sample-based estimate of P with l being the sample size (that
is, the proportion of examples that satisfy |g(x) + t| < γ). Then for any σ > 0
and any t ∈ R, we have

lim
γ→0

lim
l→∞

P (sup
g

P̂l(|g(x) + t| < γ) > σ) = 0,

and hence

sup
g

P̂l(|g(x) + t| = 0) P→ 0, l →∞.

Setting t = ±ρ or t = ±ε shows that almost surely the fraction of examples
exactly on the edges of ρ-tube or ε-tube tends to zero. Since SVs include the
examples on the edges of ρ-tube or ε-tube and margin errors, the fraction of
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SVs equals that of margin errors. It then follows from (i) and (ii) that both
fractions converge almost surely to ν1l12+ν2l3

l . ¤
Theorem 3.1 gives a theoretical bound on the fraction of margin errors. In

fact, we will show in Section 4 by numerical experiments that this theoretical
bound is practically useful in estimating the number of margin errors.

For each classifier of ν-K-SVCR, the following theorem shows the ‘outlier’
resistance property. We use shorthand zi for φ(xi) below.

Theorem 3.2 Suppose w can be expressed in terms of the SVs that are not
margin errors, that is,

w =
l∑

i=1

λizi, (47)

where λi = 0 for all i /∈ U := {i ∈ {1, · · · , l12} : − C
l12

< vi < 0 or 0 <

vi < C
l12
} ⋃ {i ∈ {l12 + 1, · · · , l} : 0 < vi < D

l3
or − D

l3
< vi < 0}. Then a

sufficiently small perturbation of any margin error zm along the direction w
does not change the hyperplane.

Proof We first consider the case m ∈ {1, · · · , l12}. Since the slack variable
corresponding to zm satisfies ξm > 0, it follows from (29) that µm = 0. Then
by (21) and (34), we get vm = C

l12
or − C

l12
. Let z′m := zm + ϑw, where |ϑ| is

sufficiently small. Then the slack variable corresponding to z′m will still satisfy
ξ′m > 0. Hence we have v′m = vm. Replacing ξm by ξ′m and keeping all other
primal variables unchanged, we obtain an updated vector of primal variables
that is still feasible.

In order to keep w unchanged, from the expression (35) of w, we need to
let v′i, i 6= m, satisfy

l∑

i=1

vizi =
∑

i6=m

v′izi + vmz′m. (48)

Substituting z′m = zm + ϑw and (47) into (48), and noting that m /∈ U , we
get a sufficient condition for (48) to hold is that for all i 6= m

v′i = vi − ϑλivm. (49)

We next show that b is also kept unchanged. Recall that by assumption λi = 0
for any i /∈ U , and so λm = 0. Hence by (34) and v′m = vm, (49) yields

α′i = αi − ϑλiyiαmym, i = 1, · · · , l12.
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If αi ∈
(
0, C

l12

)
, then α′i will be in

(
0, C

l12

)
, provided |ϑ| is sufficiently small.

If αi = C
l12

, then by assumption we have λi = 0, and hence α′i will equal C
l12

.
Thus a small perturbation zm along the direction w does not change the status
of examples (xi, θi), i = 1, · · · , l12. By (39), b does not change. Thus (w, b)
remains to be the hyperplane parameters.

In the case m ∈ {l12 + 1, · · · , l}, the result can be obtained in a similar way.
¤.

The new learning machine makes the fusion of the standard structures, one-
against-one and one-against-all, employed in the decomposition scheme of a
multi-class classification procedure. In brief, a ν-K-SVCR classifier is trained
to focus on the separation between two classes, as one-against-one does. At
the same time, it also gives useful information about the other classes that
are labelled 0, as one-against-all does. In addition, for each classifier, we can
use the parameters ν1 and ν2 to control the number of margin errors, which
is helpful in improving the accuracy of each classifier. Theorem 3.2 indicates
that every classifier is robust.

3.3 The Connection to K-SVCR

Angulo et al. [2] propose K-SVCR method for the multi-class classification.
The following theorem shows that ν-K-SVCR formulation will result in the
same classifier as that of K-SVCR by selecting the parameters properly.

Theorem 3.3 If wν , bν , ξν
i , ϕν

i , ϕ̃ν
i , εν and ρν > 0 constitute an optimal

solution to a ν-K-SVCR with given ν1, ν2, then wC = wν

ρν , bC = bν

ρν , ξC
i =

ξν
i

ρν , ϕC
i = ϕν

i

ρν , ϕ̃C
i = ϕ̃ν

i

ρν constitute an optimal solution to the corresponding
K-SVCR, with CC = Cν

l12ρν , DC = Dν

l3ρν and δC = εν

ρν being a priori chosen
parameters in K-SVCR.

Proof Consider the primal formulation of ν-K-SVCR. Let an optimal solu-
tion be given by wν , bν , ξν

i , ϕν
i , ϕ̃ν

i , εν and ρν . Substituting w′ = w
ρν , b′ = b

ρν ,

ξ′i = ξi

ρν , ϕ′i = ϕi

ρν and ϕ̃′i = ϕ̃i

ρν in the ν-K-SVCR (13)–(18), we have the
optimization problem

min{w′,b′,ξ′,ϕ′,ϕ̃′}
1
2
‖w′‖2 + CC

l∑

i=1

ξ′i + DC(
l∑

i=1

(ϕ′i + ϕ̃′i)) (50)

s.t. yi((w′ · φ(xi)) + b′) ≥ 1− ξ′i, i = 1, · · · , l12, (51)

−δC − ϕ̃′i ≤ (w′ · φ(xi)) + b′ ≤ δC + ϕ̃′i, i = l12 + 1, · · · , l, (52)

ξ′i, ϕ
′
i, ϕ̃

′
i ≥ 0. (53)
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Note that this has the same form as K-SVCR. It is not difficult to see that
wC , bC , ξC

i , ϕC
i , ϕ̃C

i constitute an optimal solution to problem (50)–(53). ¤

3.4 The Combination Method

After the decomposition scheme, we need a reconstruction scheme to fuse the
outputs of all classifiers for each example and assign it to one of the classes.
In a K-class problem, for each pair, say Θj and Θk, we have a classifier fj,k(·)
to separate them as well as the other classes (cf.(12)). So we have K(K−1)/2
classifiers in total. Hence, for an example xp, we get K(K − 1)/2 outputs. We
translate the outputs as follows: When fj,k(xp) = +1, a positive vote is added
on Θj , and no votes are added on the other classes; when fj,k(xp) = −1, a
positive vote is added on Θk, and no votes are added on the other classes; when
fj,k(xp) = 0, a negative vote is added on both Θj and Θk, and no votes are
added on the other classes. After we translate all of the K(K − 1)/2 outputs,
we will get the total votes of each class by adding the positive and negative
votes on this class. Finally, xp will be assigned to the class that gets the most
votes.

4 EXPERIMENTS

In this section, we present two types of experiments demonstrating the per-
formance of ν-K-SVCR: Experiments on artificial data sets which are used to
verify the theoretical results, and experiments on benchmark data sets.

4.1 Experiments on Artificial Data Sets

In this subsection, several experiments with artificial data in R2 are carried
out using Matlab v6.5 on Intel Pentium IV 3.00GHz PC with 1GB of RAM.
The QP problems are solved with the standard Matlab routine. For simplicity,
we set ν1 = ν2, which is denoted ν. The main tasks in the experiments are the
following:

(1) To investigate the effect of parameter ν on the fraction of margin errors,
the fraction of SVs, and the values of ε and ρ;

(2) To observe an asymptotic behavior of the fractions of margin errors and
SVs.

The effect of parameter ν
The influence of parameter ν is investigated on the training set T generated

from a Gaussian distribution on R2. The set T contains 150 examples in three
classes, each of which has 50 examples, as shown in Figure 2.
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Figure 2. Training set T

Table 1. Fractions of margin errors and SVs and the values of ε and ρ for T .

ν 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

FMEa 0 0.0667 0.1667 0.2667 0.3533 0.4600 0.5600 0.6400
FSVb 0.3867 0.4067 0.5333 0.6133 0.6867 0.7867 0.8333 0.8933
ε 0.0246 0.0112 0.0085 0.0045 0.0041 0.0009 0.0005 0
ρ 14.2287 29.1982 49.2638 72.9279 100.2379 131.1074 166.9139 213.3048

aFraction of margin errors.

bFraction of support vectors.

In the experiment, a Gaussian kernel with σ = 0.2236 is employed. We
choose C = 2000 and D = 300. Table 1 shows that ν provides an upper bound
of the fraction of margin errors and a lower bound of the fraction of SVs,
and that increasing ν allows more margin errors, increases the value of ρ, and
decreases the value of ε. It is worth noticing from Table 1 that the assumption
ρ > ε in Theorem 3.1 does hold in practice.

The tendency of the fractions of margin errors and SVs
In this experiment, we show the tendency of the fractions of margin errors

and SVs when the number of training examples increases. We choose ν = 0.2.
Ten training sets are generated from the same Gaussian distribution. In each
training set, there are three classes. The total number of examples in each
training set is l, and each class has l/3 examples. Hence we have ν1l12+ν2l3

l =
0.2. We use a polynomial kernel with degree 4, and set C = 100, D = 50. Table
2 shows that both the fraction of margin errors and the fraction of SVs tend
to 0.2 from below and above, respectively, when the total number of examples
l increases. This confirms the results established in Theorem 3.1.
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Table 2. Asymptotic behavior of the fractions of margin errors and SVs.

l 30 60 90 120 150 180 210 240 270 300

FME 0.13 0.13 0.18 0.17 0.18 0.19 0.19 0.19 0.19 0.20
FSV 0.30 0.25 0.23 0.22 0.22 0.23 0.22 0.22 0.21 0.20

Table 3. The percentage of error by 1-a-a, 1-a-1, qp-mc-sv, lp-mc-sv, K-SVCR and ν-K-SVCR.

name #ptsa #attb #class 1-a-a 1-a-1 qp-mc-sv lp-mc-sv K-SVCR ν-K-SVCR

Iris 150 4 3 1.33 1.33 1.33 2.0 [1.93, 3.0] 1.33
Wine 178 13 3 5.6 5.6 3.6 10.8 [2.29, 4.29] 3.3
Glass 214 9 6 35.2 36.4 35.6 37.2 [30.47, 36.35] [32.38, 36.19]

a The number of training data.

b The attributes of examples.

4.2 Experiments on Benchmark Data Sets

In this subsection, we test ν-K-SVCR on a collection of three benchmark data
sets from the UCI machine learning repository [4], ‘Iris’, ‘Wine’ and ‘Glass’.
In problem ‘Glass’, there is one missing class. Since no test data sets are
provided in the three benchmark data sets, we use ten-fold cross validation
to evaluate the performance of the algorithms. That is, each data set is split
randomly into ten subsets and one of those sets is reserved as a test set; this
process is repeated ten times. For ‘Iris’ and ‘Wine’, the polynomial kernels
with degree 4 and 3 are employed, respectively. For ‘Glass’, the Gaussian
kernel with σ = 0.2236 is employed. We choose ν = 0.01 in each algorithm.
We compare the obtained results with one-against-all (1-a-a), one-against-one
(1-a-1), quadratic multi-class SVM (qp-mc-sv) and linear multi-class SVM
(lp-mc-sv) proposed in [23], and K-SVCR proposed in [2]. The results are
summarized in Table 3. In the table, [·, ·] refers to the case where two or more
classes get the most votes in a tie. The first and second numbers in the brackets
are the percentage of error when examples are assigned to the right and the
wrong classes, respectively, among those with the most votes.

It can be observed that the performance of the new algorithm is generally
comparable to the other ones. Specifically, for the ‘Iris’ set, ν-K-SVCR outper-
forms the lp-mc-sv and K-SVCR methods; and it is comparable to the others.
For the ‘Wine’ set, ν-K-SVCR is comparable to K-SVCR; and it outperforms
the others. For the ‘Glass’ set, ν-K-SVCR shows a similar performance to all
the others. Note that the new algorithm is not fundamentally different from
the K-SVCR algorithm. Indeed, we have shown that for a certain parameter
setting, both algorithms will produce the same results. In practice, however,
it may sometimes be desirable to specify a fraction of points that are allowed
to become errors.
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5 CONCLUSION

We have proposed a new algorithm, ν-K-SVCR, for the multi-class classifi-
cation based on ν-SV classification and ν-SV regression. By redefining the
concept of margin errors, we have clarified the theoretical meaning of the pa-
rameters in ν-K-SVCR. We have also shown the robustness of the classifiers
and connection to K-SVCR. We have confirmed the established theoretical
results and good behavior of the algorithm through experiments on several ar-
tificial data and benchmark data sets. Future research subjects include more
comprehensive testing of the algorithm and application to real-world problems.
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