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Abstract

We investigate the effect of incomplete information in a model where a start-up

with a unique idea and technology pioneers a new market but will eventually be

expelled from the market by a large firm’s subsequent entry. We evaluate the start-

up’s loss due to incomplete information about the large firm’s behavior. We clarify

conditions under which the start-up needs more information about the large firm.

The proposed method of evaluating the loss due to incomplete information could

also be applied to other real options models involving incomplete information.

Keywords: Applied probability; Investment analysis; Real options; Incomplete in-

formation; Leader-follower game

1 Introduction

The real options approach has become an increasingly standard framework for investment

timing decisions. In the real options approach, a firm that faces an irreversible invest-

ment generating uncertain profit in future is considered to have an option to make the

investment. Then, in order to maximize the expected profit, the firm must invest when

the NPV (net present value) of the investment becomes greater than the opportunity

cost of investing (i.e., the value of the option to delay the investment). The real options
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u.ac.jp (M. Fukushima), michi@amp.i.kyoto-u.ac.jp (M. Nishihara).
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approach to investment has provided a new insight into a firm’s real investment decision

which tends to rely on managerial experiences and intuitions, and it has gradually come

to be applied to investment in the real world since the proposal by Dixit (1989) and

McDonald and Siegel (1986).

Although the early literature considered the investment decision of monopolists, more

recent studies (see Boyer, Gravel, and Lasserre (2004) for an overview) have investigated

how the firm’s investment decision is affected by its rival firms’ behaviors because an

opportunity to make investment, unlike financial options, can usually be shared by several

firms in the same industry. One of the earliest results in the strategic real options has

been obtained by Grenadier (2002), who studied the symmetric equilibrium strategy for

firms. Weeds (2002) has derived equilibrium strategies in two players who attempt to

preempt a single patent from the other, and Huisman and Kort (2003) have investigated

a two player real options game in the context of the adoption of new technology.

While the above studies assume complete information about the competitors, Lam-

brecht and Perraudin (2003) consider a model involving incomplete information about

the competitors’ investment costs. Hsu and Lambrecht (2003) introduce asymmetric and

incomplete information in real options in the context of a patent race. Using the filtering

theory, Bernardo and Chowdhry (2002) and Décamps, Mariotti, and Villeneuve (2005)

have investigated models in which a firm has incomplete information about parameters

of its own profit flow rather than the competitors’ behavior. Furthermore, Grenadier and

Wang (2005) and Nishihara and Shibata (2007) have examined the effect of asymmetric

information between the owner and the manager in the single firm.

The effect of incomplete information is practically significant, since how accurately a

firm can estimate the behaviors of rival firms has a crucial effect on whether or not its

investment succeeds. The previous studies such as Lambrecht and Perraudin (2003) and

Hsu and Lambrecht (2003) derived the values and the optimal strategies under incomplete

information simultaneously. However, in their approach, the value under incomplete in-

formation has an element of the firm’s estimation and hence it may exceed the value under

complete information. In order to reveal how great loss a firm may suffer due to incom-

plete information, we examine the value of the project from a different aspect. Actually,

we regard the value derived simultaneously with the optimal stopping time under incom-
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plete information as what the firm believes. We, unlike the previous studies, calculate the

real expected payoff, which is different from the value that the firm believes. Then, we

derive the loss due to incomplete information as the difference between the real expected

payoff and the expected payoff in the case of complete information. This analysis is useful

to unveil a risk of a firm using the real options approach under incomplete information.

This paper examines a model with a start-up who pioneers a new market by a unique

idea and technology and a large firm that will eventually take over the market from

the start-up. We evaluate the start-up’s loss due to incomplete information about the

large firm. Then, we clarify conditions under which the start-up needs more information

about the large firm. Moreover, we show that in some cases the real options strategy

under incomplete information gives less expected payoff to the start-up than the zero-

NPV strategy (i.e., investing when the NPV of the investment becomes positive) under

the same incomplete information. Our results suggest that in some cases a firm using the

real options approach to investment has a great risk of incorrect conjectures about the

behaviors of its competitors. Although we consider the simple model involving two firms

for the purpose of concentrating our attention on the loss due to incomplete information,

the proposed method of evaluating the loss due to incomplete information could also be

applied to other real options models involving several firms.

This paper is organized as follows. After the model is introduced in Section 2, Section

3 derives the start-up’s value function and optimal strategy under complete information.

Section 4 describes our main theoretical results, which show the start-up’s strategy under

incomplete information, its real expected payoff, and the loss due to incomplete informa-

tion. In Section 5, we discuss how similar results can be obtained in a general situation,

although the analysis in Sections 3 and 4 limit attention to a simple situation for math-

ematical convenience. Section 6 provides several implications with numerical examples.

Section 7 concludes the paper.

2 Model

This section introduces the model treated in this paper. We consider the start-up (leader)’s

problem of determining the timing of entering the new market which may be taken over
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by the large firm (follower) eventually. In this problem, we will discuss how incomplete

information about the large firm affects the expected payoff of the start-up. Throughout

this paper, we assume that both stochastic process and random variable are defined on

the filtered probability space (Ω,F , P ;Ft). The model is described as follows:

Profit flows and investment costs of the two firms: The start-up can receive a

profit flow D1(1, 0)Y (t) in the new market by paying an indivisible investment cost I1,

but the flow will be reduced to D1(1, 1)Y (t) after the large firm’s entry to the market.

Here, (1, 0) (resp. (1, 1)) denotes the situation in which only the start-up (resp. both

firms) is active in the market. Quantities I1, D1(1, 1) and D1(1, 0) are constants such

that I1 > 0 and 0 ≤ D1(1, 1) < D1(1, 0), and Y (t) is the market demand satisfying the

following geometric Brownian motion:

dY (t) = µY (t)dt + σY (t)dB(t) (t > 0), Y (0) = y, (1)

where µ (≥ 0), σ (> 0) and y (> 0) are given constants, and B(t) denotes the one-

dimensional Ft standard Brownian motion. In contrast, the large firm does not notice

the existence of the potential market until the start-up’s investment. The large firm can

obtain a profit flow D2(1, 1)Y (t) in the market by paying an indivisible investment cost

I2 after the start-up’s investment. Here, I2 and D2(1, 1) are positive constants. The

adapted process Y (t) captures observable (and exogenous) market demand at time t,

while Di(·, ·) (i = 1, 2) captures the endogenous change in firm cash flows resulting from

the respective firms’ entrance in the market.

The large firm’s investment decision: The large firm does not notice the opportunity

to preempt the market until the date τ1 on which the start-up invests. Then, with discount

rate ρ (> µ), the large firm optimizes its investment time τ2 by solving the following

optimal stopping problem:

sup
τ2≥τ1

E[

∫ ∞

τ2

e−ρtD2(1, 1)Y (t)dt− e−ρτ2I2], (2)

where τ2 is any Ft stopping time that satisfies τ2 ≥ τ1. Let us call Q1 = D1(1, 0)/I1

and Q2 = D2(1, 1)/I2 the efficiencies of the start-up’s and the large firm’s investment,

respectively. The efficiencies will be influenced by the profit margin in addition to the

firm’s idea and technology standard. This paper considers a situation in which the large

firm sets a smaller profit margin in order to take over the market from the leader. For
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that reason, the large firm’s efficiency is likely to be lower than that of the start-up. Let

τ q
2 denote the optimal stopping time of problem (2) with Q2 = D2(1, 1)/I2 replaced by a

general constant q (> 0).

The start-up’s investment decision: Since the start-up does not have complete infor-

mation about the efficiency of the large firm, the start-up determines its investment time

τ1 assuming that the efficiency of the large firm obeys a random variable X independent

of filtration {Ft}. Then, the start-up believes that its expected payoff of investing at τ1

is equal to

E

[∫ τX
2

τ1

e−ρtD1(1, 0)Y (t)dt +

∫ +∞

τX
2

e−ρtD1(1, 1)Y (t)dt− e−ρτ1I1

]
, (3)

where τX
2 represents a random variable which takes a value τ

X(ω)
2 (ω) for ω ∈ Ω (note that

τX
2 also depends on τ1). The start-up finds its investment time τ1 by solving the following

optimal stopping problem:

V (y) = sup
τ1

E

[∫ τX
2

τ1

e−ρtD1(1, 0)Y (t)dt +

∫ +∞

τX
2

e−ρtD1(1, 1)Y (t)dt− e−ρτ1I1

]
, (4)

where τ1 is any Ft stopping time. Let V (y) (recall y = Y (0)) and τ ∗1 denote the value

function and the optimal stopping time in problem (4), respectively. The optimal stopping

time τ ∗1 is expressed in a form independent of the initial value y, as will be shown in

Sections 3 and 4．Let V (y; q) and τ q
1 be the value function and the optimal stopping

time, respectively, in problem (4) with X replaced by a constant q (> 0). Note that, if

the start-up has the complete information on the large firm’s efficiency Q2, the start-up

invests at τQ2

1 and its real expected payoff agrees with V (y; Q2).

Remark 2.1 For simplicity, this paper treats the two player leader-follower game as men-

tioned above. Similar results can be obtained in a more practical setting that permits

several followers, by assuming that the followers make joint investment. There is a pos-

sibility that the followers make joint investment even if they are non-cooperative. For

details, see Huisman (2001).

Dixit and Pindyck (1994) and Huisman (2001) have investigated a preemption model

in which both firms attempt to become a leader assuming complete information. Unlike

their model, the model studied in this paper is a leader-follower game. Indeed, we model
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a situation where a small entrepreneurial firm has the advantage of pioneering a new

market, while a large follower has a big power of taking over the market from the small

leader. In Sections 3 and 4, we assume 0 = D1(1, 1) < D2(1, 1) to avoid mathematical

clutter and understand the essence of the loss due to incomplete information. Since this

assumption is extreme, we consider a more realistic setting, i.e., D1(1, 1) > 0 in Section 5

and explain how similar results are obtained. In the rest of the paper, we will denote for

simplicity D1 = D1(1, 0) and D2 = D2(1, 1) unless they cause confusion.

3 Case of complete information

This section derives the value function V (y; q) and the optimal stopping time τ q
1 of the

start-up who believes that the efficiency of the large firm’s investment is a constant q (> 0).

That is, we consider problem (4) with X ≡ q. As in Dixit and Pindyck (1994) and

Huisman (2001), we solve the leader-follower game backwards.

First, we begin by supposing that the start-up (leader) has already invested at time τ1,

and derive the optimal stopping time τ q
2 of the large firm (follower). That is, we consider

the follower’s problem. Under the assumption that the start-up has already entered

the market, the large firm’s problem (2) can be treated as a problem for a monopolist.

Therefore, the large firm’s optimal stopping time τ q
2 in problem (2) with Q2 = q is

expressed as follows:

τ q
2 = inf{t ≥ τ1 | Y (t) ≥ yM(q)}, (5)

where we define

yM(q) =
β1(ρ− µ)

(β1 − 1)q
(q > 0), (6)

β1 =
1

2
− µ

σ2
+

√(
µ

σ2
− 1

2

)2

+
2ρ

σ2
, (7)

β2 =
1

2
− µ

σ2
−

√(
µ

σ2
− 1

2

)2

+
2ρ

σ2
. (8)

Here, βi (i = 1, 2) are usual characteristic roots in an optimal stopping problem with

discount rate ρ and state process Y (t) following (1), and we can easily check β1 > 1 and

β2 < 0 by σ > 0 and 0 ≤ µ < ρ. The function yM(q) represents the optimal investment

trigger of a monopolist with efficiency q (see, for example, Dixit and Pindyck (1994)).
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Next, using the large firm’s response τ q
2 derived as (5), we calculate the start-up’s

value function V (y; q) and investment time τ q
1 in problem (4) with X ≡ q. That is, we

consider the leader’s problem. Before stating the proposition, we define the function

p(β1, Q1, q) =

(
1

β1

) 1
β1−1

− q

Q1

(β1 > 1, Q1 > 0, q > 0), (9)

which values how large the start-up’s efficiency Q1 is against q. The importance of the

function p(β1, Q1, q) will be mentioned after the following proposition.

Proposition 3.1 The start-up’s value function V (y; q) and optimal stopping time τ q
1 are

given as follows. If

p(β1, Q1, q) > 0, (10)

then

V (y; q) =





A(q)yβ1 (0 < y < yM(Q1))

D1y

ρ− µ
− I1 − D1yM(q)−β1+1yβ1

ρ− µ
(yM(Q1) ≤ y ≤ yU(q))

B(q)yβ2 (y > yU(q)),

(11)

and τ q
1 is expressed as τ q

1 = inf{t ≥ 0 | Y (t) ∈ [yM(Q1), yU(q)]} (i.e., a hitting time into

the interval [yM(Q1), yU(q)]) regardless of the initial value Y (0) = y. Here, yM(Q1) is the

threshold defined by (6) with q = Q1, and A(q) is defined by

A(q) = yM(Q1)
−β1

(
D1yM(Q1)

ρ− µ
− I1 − D1yM(q)−β1+1yM(Q1)

β1

ρ− µ

)
(q > 0). (12)

Moreover, for q > 0 satisfying (10), yU(q) is the threshold defined by the unique solution

of the equation

(β1 − β2)Q1yM(q)−β1+1

ρ− µ
yβ1 +

(β2 − 1)Q1

ρ− µ
y − β2 = 0 (yM(Q1) < y < yM(q)), (13)

and B(q) is defined by

B(q) = yU(q)−β2

(
D1yU(q)

ρ− µ
− I1 − D1yM(q)−β1+1yU(q)β1

ρ− µ

)
. (14)

If (10) does not hold, then V (y; q) = 0 for all y > 0 and τ q
1 = +∞.

(Proof) See Appendix A.
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Remark 3.1 Until the large firm’s efficiency q exceeds the solution of p(β1, Q1, q) =

0, inequality (10) holds, and yU(q) and V (y; q) monotonically decrease with q. On the

contrary, we have yU(q) ↑ +∞ and τ q
1 → inf{t ≥ 0 | Y (t) ≥ yM(Q1)} as q ↓ 0; this means

that the stopping time τ q
1 tends to the optimal stopping time of a monopolist.

Remark 3.2 By taking q = Q2 in Proposition 3.1, we obtain the real expected payoff

V (y; Q2) of the start-up who has complete information about the efficiency of the large

firm.

We explain equation (11) in Proposition 3.1. The interval [yM(Q1), yU(q)] represents

the stopping (investment) region, where the start-up immediately invests. The value

function V (y; q) in this region consists of two components, namely the monopoly profit

D1y/(ρ−µ)− I1 and the subtracter D1yM(q)−β1+1yβ1/(ρ−µ) which represents the effect

of takeover by the follower. The remaining parts (0, yM(Q1)) and (yU(q),∞) represent the

continuation region, where the start-up delays its investment until the market demand

Y (t) reaches one of the thresholds. However, the reasons why the start-up defers its

investment in the two regions are completely different. When Y (t) lies in the region

(0, yM(Q1)), the start-up waits until the market demand level yM(Q1) is achieved so as

to obtain a good profit from the investment. On the other hand, when Y (t) is in the

region (yU(q),∞), the start-up waits for the market demand Y (t) to fall down to yU(q) so

as to prevent the follower from investing too early. Note that the start-up’s investment

trigger yM(Q1) remains unchanged from that of the monopolist regardless of the large

firm’s efficiency q, as far as inequality (10) is satisfied. The value functions A(q)yβ1 and

B(q)yβ1 in the continuation regions mean the values of the options to invest at the triggers

yM(Q1) and yU(q), respectively.

As the presence of the upper trigger yU(q) is a distinctive feature of our leader-follower

model, we will explain it in more detail. Proposition 3.1 suggests that if the initial value

Y (0) = y is larger than yU(q), the start-up should delay its investment until the market

demand Y (t) drops to the threshold yU(q). Note that Y (t) could decrease from the initial

value y to the threshold yU(q) even with a positive drift µ in (1) because of the positive

volatility σ in (1). Even if the start-up makes its investment in the case of Y (t) > yU(q),

the large firm is quite likely to enter the market before the start-up gains a sufficient cash

flow. Thus, the start-up defers its investment when the market demand is great.

8



Inequality (10) can be interpreted as a prerequisite condition for the start-up’s invest-

ment. In fact, the start-up’s expected payoff never becomes positive for any time t and

any value of Y (t), unless (10) holds (for details see Appendix A). Now we examine how

the prerequisite condition (10) is changed by the values of parameters µ, ρ and σ. We

can see from (7) that ∂β1/∂σ < 0, limσ↑+∞ β1 = 1, limσ↓0 β1 = ρ/µ > 1, ∂β1/∂µ < 0 and

∂β1/∂ρ > 0 (see Dixit and Pindyck (1994)). Since p(β1, Q1, q) is monotonically increasing

for β1 > 1 by (9), the prerequisite condition (10) becomes more restrictive, i.e., the oppor-

tunity for the start-up to invest is more likely to be lost, as the drift µ and the volatility

σ (resp. the discount rate ρ) in the market increase (resp. decrease). This is because the

start-up’s investment opportunity is greatly affected by the large firm. That is, increases

in the drift and volatility raise the probability of the large firm’s entry. Consequently,

it is harder for the start-up to find the opportunity to obtain enough profits before the

takeover by the big follower. Moreover, we have p(β1, Q1, q) ↓ 1/e − q/Q1 as β1 ↓ 1, and

p(β1, Q1, q) ↑ 1 − q/Q1 as β1 ↑ +∞ by (9). Hence, if the start-up’s efficiency Q1 is e

times larger than that of the large firm, the prerequisite condition (10) always holds and

the start-up’s entrepreneurial activity is absolutely valuable for any values of parameters

µ, ρ and σ. If the start-up’s efficiency Q1 is less than that of the large firm, on the other

hand, then the prerequisite condition never holds, which means that the start-up has no

opportunity to make the entrepreneurial activity.

Finally, it should be noted that the complete information version has an element

of incomplete information, because the large firm does not learn about the investment

opportunity until the start-up makes its investment. The start-up knows this and uses its

informational advantage in determining its optimal investment. The next section describes

our main results, which evaluate the start-up’s loss due to incomplete information about

the efficiency of the large firm’s investment

4 Loss due to incomplete information

This section evaluates the start-up’s loss due to incomplete information about the effi-

ciency of the large firm’s investment by the following procedure:

Step 1: Derive the value function V (y) and the optimal stopping time τ ∗1 in problem (4)

9



which the start-up believes.

Step 2: Calculate the real expected payoff Ṽ (y) of the start-up who invests at time τ ∗1

calculated in Step 1.

Step 3: Derive W (y) = V (y; Q2) − Ṽ (y), which is the difference between the expected

payoff of the start-up who invests at time τQ2

1 under complete information and that of the

start-up who invests at (wrong) time τ ∗1 due to incomplete information.

The quantity W (y) calculated in Step 3 is regarded as the loss due to incomplete infor-

mation. Most of the existing works concerning real options under incomplete information

consider only Step 1, namely the optimal strategy and the value that the firm believes

under incomplete information. We however consider the real payoff in Step 2 and then

compare the real payoff (which is different from the value in Step 1) and the value under

complete information in Step 3. In the above procedure, we examine the loss which the

firm suffers due to incomplete information. The proposed method may also be applied to

other real options models involving incomplete information. The loss due to incomplete

information is identified as the value of information about the rival firm, and hence it tells

us whether the firm should conduct a further survey on the rival firm or not. Subsections

4.1, 4.2, and 4.3 describe Steps 1, 2, and 3, respectively.

4.1 Start-up’s strategy under incomplete information

The start-up determines its investment time, believing that the large firm’s efficiency

obeys a random variable X independent of the filtration {Ft}. We call the random variable

X the start-up’s estimation of the large firm’s efficiency. Here we assume that X > 0 and

E[Xβ1−1] < +∞. We define the function g(y) by

g(y) =
D1y

ρ− µ
− I1 −

D1E
[
max(yM(X), y)−β1+1

]
yβ1

ρ− µ
(y > 0). (15)

It can be seen in the calculations in Appendix B that g(y) is equal to the expectation (3)

with τ1 = 0, namely the payoff (that the start-up believes) by the immediate investment.

Recall that y is the initial market demand y = Y (0). Generally, it is hard to derive an

explicit form of the value function and the optimal stopping time in problem (4). However,

we can show that problem (4) is reducible to the problem with q = Q̃2 in Section 3, where

we define Q̃2 = E[Xβ1−1]1/(β1−1), provided that the following condition holds:
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Condition (a): The inequality g(y) ≤ V (y; Q̃2) holds for all y > 0.

The quantity Q̃2 features the start-up’s strategy under incomplete information as will be

shown in the following proposition. In relation to (15), we define

h(y) =
D1y

ρ− µ
− I1 −

D1E
[
yM(X)−β1+1

]
yβ1

ρ− µ
(y > 0). (16)

From the definitions of g(y), h(y), Q̃2 and Proposition 3.1, it immediately follows that

h(y) ≤ g(y) (y > 0), (17)

h(y) = V (y; Q̃2) (yM(Q1) < y < yU(Q̃2), p(β1, Q1, Q̃2) > 0). (18)

Using this property, we can show the following proposition, which is the key to evaluating

the loss due to incomplete information.

Proposition 4.1 Assume that Condition (a) holds. The value function V (y) and the

optimal stopping time τ ∗1 in problem (4) which the start-up believes are given as V (y) =

V (y; Q̃2) and τ ∗1 = τ Q̃2

1 for all y > 0, respectively, where V (y; Q̃2) and τ q
1 are given in

Proposition 3.1.

(Proof) See Appendix B.

Remark 4.1 Condition (a) is likely to hold when the support of X is not very wide. In

particular, we can easily show that Condition (a) always holds whenever X is a constant.

Remark 4.2 Figure 1 illustrates the function V (y) = V (y; Q̃2) together with the func-

tions g(y) and h(y) under Condition (a). In particular, we observe that V (y) = V (y; Q̃2) =

g(y) = h(y) holds for y ∈ [yM(Q1), yU(Q̃2)].

Proposition 4.1 shows the value function and the optimal stopping time of the start-

up with estimation X. It should be noted that the value V (y) is just the one believed

by the start-up and is different from the real expected payoff of the investment, Ṽ (y),

which will be calculated in the next subsection. By Proposition 4.1, the start-up with the

estimation X takes the same strategy as that of the start-up with the constant estimation

Q̃2 under Condition (a). That is, the start-up’s estimation of the large firm’s efficiency is

completely characterized by the single quantity Q̃2 = E[Xβ1−1]1/(β1−1) independently of

its distribution. However, this is not always true in a general case without Condition (a).

In the rest of the paper, we will restrict our attention to the case where Condition (a) is

satisfied.
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V (y) = V (y, Q̃2)

g(y)

yU(Q̃2)yM(Q1)

yNPV
L yNPV

U

Y (0) = y

Expected
payoff

−I1

0

h(y)

Figure 1: g(y), h(y) and V (y) = V (y; Q̃2).

4.2 The real expected payoff of the start-up

This subsection derives the real expected payoff Ṽ (y) of the start-up who invests at time

τ ∗1 calculated in Proposition 4.1. Since the large firm’s real efficiency is Q2, its real

investment time is equal to (5) with q = Q2, i.e.,

τQ2

2 = inf{t ≥ τ ∗1 | Y (t) ≥ yM(Q2)}. (19)

Then, the start-up’s real expected payoff Ṽ (y) becomes

Ṽ (y) = E

[∫ τ
Q2
2

τ∗1

e−ρtD1Y (t)dt− e−ρτ∗1 I1

]
. (20)

We can show the following proposition by calculating the expectation (20).

Proposition 4.2 Assume that Condition (a) holds. The real expected payoff Ṽ (y) of

the start-up who invests at τ ∗1 is given as follows. If p(β1, Q1, Q̃2) > 0, then

Ṽ (y) =





Ã(Q2)y
β1 (0 < y < yM(Q1))

D1y

ρ− µ
− I1 − D1 max(y, yM(Q2))

−β1+1yβ1

ρ− µ
(yM(Q1) ≤ y ≤ yU(Q̃2))

B̃(Q̃2)y
β2 (y > yU(Q̃2)),

(21)
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where yM(·) is defined by (6), yU(Q̃2) is the unique solution of equation (13) with q = Q̃2,

and Ã(Q2) and B̃(Q̃2) are defined by

Ã(Q2) = yM(Q1)
−β1

(
D1yM(Q1)

ρ− µ
− I1 − D1 max(yM(Q1), yM(Q2))

−β1+1yM(Q1)
β1

ρ− µ

)
,(22)

B̃(Q̃2) = yU(Q̃2)
−β2

(
D1yU(Q̃2)

ρ− µ
− I1 − D1 max(yU(Q̃2), yM(Q2))

−β1+1yU(Q̃2)
β1

ρ− µ

)
.(23)

If p(β1, Q1, Q̃2) ≤ 0, then Ṽ (y) = 0 for all y > 0.

(Proof) See Appendix C.

Remark 4.3 Propositions 3.1, 4.1 and 4.2 ensure that Ṽ (y) = V (y; Q2) = V (y; Q̃2) =

V (y) under Condition (a), whenever Q̃2 = Q2.

We make a brief explanation about Proposition 4.2. If p(β1, Q1, Q̃2) > 0, then the start-up

invests as soon as the market demand Y (t) reaches the investment region [yM(Q1), yU(Q̃2)].

Then it obtains the expected cash flow (21), but (21) may be negative if the start-up’s

estimation of the large firm’s efficiency is far from correct. Otherwise, the start-up makes a

decision of never investing because it considers no value of the project due to the presence

of the big follower.

4.3 The start-up’s loss due to incomplete information

We evaluate the start-up’s loss W (y) = V (y; Q2) − Ṽ (y) due to incomplete information

about the large firm’s efficiency. The loss W (y) varies according to the relation between

Q̃2 and Q2. Note that yM(·) is monotonically decreasing by definition (6).

Case (U): Q̃2 < Q2 The start-up underestimates the large firm’s efficiency, and yM(Q̃2) >

yM(Q2) holds with respect to the large firm’s entry trigger.

Case (C): Q̃2 = Q2 The start-up correctly estimates the large firm’s efficiency, and

yM(Q̃2) = yM(Q2) holds with respect to the large firm’s entry trigger.

Case (O): Q̃2 > Q2 The start-up overestimates the large firm’s efficiency, and yM(Q̃2) <

yM(Q2) holds with respect to the large firm’s entry trigger.

Proposition 4.3 Assume that Condition (a) holds. The start-up’s loss W (y) due to

incomplete information is given as follows.

Case (U): Q̃2 < Q2

13



Case (U.1): p(β1, Q1, Q̃2) ≤ 0 W (y) = 0 for all y > 0.

Case (U.2): p(β1, Q1, Q̃2) > 0 and p(β1, Q1, Q2) ≤ 0 W (y) = −Ṽ (y) for all y > 0.

Case (U.3): p(β1, Q1, Q2) > 0

W (y) =





0 (0 < y < yU(Q2))

B(Q2)y
β2 − D1y

ρ− µ
+ I1 +

D1 max(y, yM(Q2))
−β1+1yβ1

ρ− µ
(yU(Q2) ≤ y ≤ yU(Q̃2))

(
B(Q2)− B̃(Q̃2)

)
yβ2 (y > yU(Q̃2)).

Case (C): Q̃2 = Q2 W (y) = 0 for all y > 0.

Case (O): Q̃2 > Q2

Case (O.1): p(β1, Q1, Q2) ≤ 0 W (y) = 0 for all y > 0.

Case (O.2): p(β1, Q1, Q2) > 0 and p(β1, Q1, Q̃2) ≤ 0 W (y) = V (y; Q2) for all y > 0.

Case (O.3): p(β1, Q1, Q̃2) > 0

W (y) =





0 (0 < y < yU(Q̃2))

D1y

ρ− µ
− I1 − D1yM(Q2)

−β1+1yβ1

ρ− µ
− B̃(Q̃2) (yU(Q̃2) ≤ y ≤ yU(Q2))

(
B(Q2)− B̃(Q̃2)

)
yβ2 (y > yU(Q2)).

Here, yU(·) is the unique solution of equation (13), and B(Q2) and B̃(Q̃2) are defined by

(14) with q = Q2 and (23), respectively.

(Proof) In Case (C) (i.e., Q̃2 = Q2), we have Ṽ (y) = V (y; Q2) and hence W (y) =

V (y; Q2) − Ṽ (y) = 0. By (9), in Case (U) (i.e., Q̃2 < Q2) we have p(β1, Q1, Q2) <

p(β1, Q1, Q̃2), while in Case (O) (i.e., Q̃2 > Q2) we have p(β1, Q1, Q̃2) < p(β1, Q1, Q2).

Therefore, we can further classify Cases (O) and (U) into six regions. Then, we can easily

calculate W (y) = V (y; Q2)− Ṽ (y) from Propositions 3.1 and 4.2 in each case. ¤
Let us mention how the start-up suffers the loss due to incomplete information in each

case of the above proposition. Needless to say, in Case (C) the start-up’s strategy becomes

optimal as τ ∗1 = τ Q̃2

1 = τQ2

1 , and hence the start-up suffers no loss for any initial value. In

Cases (U.1) and (O.1), the prerequisite condition for the start-up’s investment does not

actually hold (i.e., p(β1, Q1, Q2) ≤ 0), and the start-up never attempts to invest. As a

result, in these cases the start-up’s never investment strategy is optimal, and the loss is

always zero.
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Cases (U.2) and (O.2) correspond, respectively, to the case where the start-up attempts

to invest although the prerequisite condition does not actually hold and the case where

the start-up never attempts to invest although the prerequisite condition actually holds.

Due to this misjudgment of the opportunity to invest, the start-up suffers the loss for any

initial value y > 0. Note that W (y) in Case (U.2) is positive by Ṽ (y) < 0 for all y > 0.

In Cases (U.3) and (O.3), the prerequisite condition actually holds, and also the start-

up attempts to invest. Thus, in these cases, unlike in Cases (U.2) and (O.2), the start-up’s

judgement of the investment opportunity is correct. The start-up makes its investment at

τ Q̃2

1 = inf{t ≥ 0 | Y (t) ∈ [yM(Q1), yU(Q̃2)]}, though the optimal investment timing τQ2

1 is

given as inf{t ≥ 0 | Y (t) ∈ [yM(Q1), yU(Q2)]}. In Case (U.3), since yU(Q̃2) > yU(Q2), the

start-up makes the investment earlier than τQ2

1 and suffers the loss W (y) when y > yU(Q2);

contrarily, in Case (O.3), since yU(Q̃2) < yU(Q2), the start-up makes the investment later

than τQ2

1 and suffers the loss W (y) when y > yU(Q̃2). The loss in the second region in

Case (U.3) can be interpreted as the value of the option to defer the investment minus

the value of the immediate investment. On the other hand, the loss in the second region

in Case (O.3) represents the value of the immediate investment minus the value of the

option to defer the investment

Corollary 4.1 Suppose that Condition (a) holds. Also assume that the random variable

X has a support (0, QU ] for some constant QU , and that the large firm’s real efficiency

Q2 satisfies Q2 ∈ (0, QU ]. If conditions p(β1, Q1, QU) > 0 and y ≤ yU(QU) are satisfied,

then the start-up suffers no loss due to incomplete information. Here, yU(QU) is defined

as the unique solution of equation (13) with q = QU .

The first condition means that it is certain that the efficiency of the start-up’s investment,

Q1, is sufficiently greater than that of the large firm, Q2. The second condition means

that the initial market demand Y (0) = y cannot generate great profit immediately. Thus,

Proposition 4.3 suggests that more detailed information about the large firm is of little

value when the start-up’s efficiency is much better than that of the large firm in the new

market that is small for the present.

The expected payoff Ṽ (y) obtained by the real options strategy τ ∗1 may generate less

profit than the expected payoff ṼNPV (y) obtained by the zero-NPV strategy (which means

to invest when the NPV of the investment becomes positive) under the same estimation

15



X. To see this, consider the function g(y) defined by (15) and assume that the equation

g(y) = 0 (y > 0) has exactly two solutions denoted 0 < yNPV
L < yNPV

U as shown in Figure

1. This assumption holds in most cases. Then, the start-up that employs the zero-NPV

strategy invests at τNPV
1 = inf{t ≥ 0 | Y (t) ∈ [yNPV

L , yNPV
U ]}, although the start-up that

takes the real options strategy invests at τ ∗1 = inf{t ≥ 0 | Y (t) ∈ [yM(Q1), yU(Q̃2)]}.
Since yNPV

L < yM(Q1) < yU(Q̃2) < yNPV
U as observed in Figure 1, the zero-NPV timing

τNPV
1 is not later than the real options timing τ ∗1 . We define QNPV as the unique solution

of yU(q) = yNPV
U . Taking into consideration that the zero-NPV timing is expressed as

inf{t ≥ 0 | Y (t) ∈ [yNPV
L , yU(QNPV )]}, we can show the following corollary.

Corollary 4.2 Suppose that Condition (a) holds. Also assume that the equation g(y) =

0 (y > 0) has exactly two solutions. Then, ṼNPV (y) > Ṽ (y) holds if one of the following

three conditions is satisfied in Case (O.3) (i.e., Q̃2 > Q2 and p(β1, Q1, Q̃2) > 0):

• QNPV < Q2 and y > yU(Q̃2)

• Q2 ≤ QNPV , B̃(Q̃2) < B̃(QNPV ) and y > yU(Q̃2)

• Q2 ≤ QNPV , B̃(QNPV ) ≤ B̃(Q̃2) and yU(Q̃2) < y < yC

Here, yU(Q̃2) is the unique solution of equation (13) with q = Q̃2 and B̃(·) is defined by

(23). Moreover, yC is the unique solution of the equation

D1

ρ− µ
max(y, yM(Q2))

−β1+1yβ1 +B̃(Q̃2)y
β2− D1

ρ− µ
y+I1 = 0 (yU(Q2) < y ≤ yU(QNPV )),

which is obtained as the intersection of the graphs of two functions ṼNPV (y) = D1y/(ρ−
µ)− I1 −D1 max(y, yM(Q2))

−β1+1yβ1/(ρ− µ) and Ṽ (y) = B̃(Q̃2)y
β2 .

5 General setting

This section makes a brief explanation about results in the general situation where the

large follower does not completely annihilate the small firm, i.e., we assume that 0 <

D1(1, 1) < D1(1, 0). In practice, a small entrepreneurial firm (or its unique technology)

may tend to be bought-out by a large follower. The analysis in this section could be useful

in such a situation by reinterpreting the expected profit E[
∫ +∞

τ2
e−ρtD1(1, 1)Y (t)dt] after

the large firm’s entry time τ2 as the reward which the start-up gains by the buy-out.
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The difference from the results of the previous sections only consists in the fact that the

start-up’s investment policy involves one more investment trigger. First, let us consider

the case of complete information. The start-up’s investment strategy can be written as

τ q
1 = inf{t ≥ 0 | Y (t) ∈ [yM(Q1), yU1(q)] ∪ [yU2(q), +∞)} under a similar condition (but

much more complicated since it involves D1(1, 1) in addition to β1, Q1, and q) to the

prerequisite condition in Proposition 3.1. The additional stopping (investment) region

[yU2(q), +∞) represents the start-up’s investment allowing the large firm’s immediate

follow. Indeed, for any sufficiently large market demand Y (t), the start-up obtains the

positive profit D(1, 1)Y (t)/(ρ − µ) − I1 (note D1(1, 1) > 0) in spite of the large firm’s

immediate follow. Note that this region is not important in terms of clarifying the feature

of the small firm’s strategy as the leader. The start-up does not have to wait forever for

large Y (t), though for halfway Y (t) ∈ (yU1(q), yU2(q)), it delays the investment until Y (t)

either falls to yU1(q) or rises to yU2(q). The condition (called, hereafter, the preemptive

condition), which is obtained by modifying the prerequisite condition, determines whether

the start-up takes a preemptive action. Recall that the prerequisite condition determines

whether the start-up completely gives up. If the preemptive condition is not satisfied, the

start-up’s strategy can be expressed as τ q
1 = inf{t ≥ 0 | Y (t) ≥ yM(D1(1, 1)/I1))}. In

this case, the start-up gives up any entrepreneurial action, instead of completely giving

up the investment.

Next, we consider the case of incomplete information. Similar results to those in

Sections 4.1 and 4.2 are obtained by modifying the definition of g(y). With the definition

of Q̃2 unchanged, we can still classify the start-up’s strategy into Cases (U), (C), and

(O), according to the relation between Q2 and Q̃2. Therefore, the essence of the results

about the start-up’s loss due to incomplete information is preserved. Indeed, the results

differ from those in Section 4.3 only in that the loss W (y) always becomes zero for a

sufficiently large initial value y because the start-up’s optimal investment strategy allows

the large firm’s immediate follow. There is little difference between the results in the

previous sections and those of the general situation when the initial value y is small, and

therefore the same statement as in Corollary 4.1 holds.
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6 Numerical Examples

This section shows economic implications, using some numerical examples, of the theo-

retical results given in Sections 3 and 4. Unless otherwise noted, in what follows we set

the start-up’s parameters as D1 = 0.04, I1 = 1, µ = 0, σ = 0.2, and ρ = 0.04 as in the

standard parameter values in Dixit and Pindyck (1994). Then, we have Q1 = 0.04, β1 = 2

and β2 = −1. Moreover, the investment trigger for the monopolist is calculated as

yM(Q1 = 0.04) = 2, which is twice as big as the Marshallian trigger (i.e., the point

where the NPV is zero).

To begin with, we consider the start-up’s investment strategy with complete informa-

tion for a range of the large firm’s efficiency Q2 = q. We observe from Figure 2 that, if the

large firm’s efficiency Q2 = q is less than half of the start-up’s efficiency Q1 = 0.04, the

prerequisite condition (10) for the start-up’s investment is satisfied. The vertical dotted

line at q = 0.02 in Figure 2 divides the whole region into two subregions that correspond

to the case where the prerequisite condition (10) holds and the case of never investing.

The former subregion is further divided into three regions as shown in Figure 2. We can

observe that the start-up’s investment region becomes larger as the large firm’s efficiency

Q2 = q decreases.
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Figure 2: Investment triggers for various Q2 = q.

Let us turn our attention to the strategy and the loss W (y) of the start-up with

estimations X of the large firm’s efficiency. We examine two different cases: (1) the

prerequisite condition (10) is really satisfied, in which case we set the large firm’s real
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efficiency Q2 = 0.01, and (2) the prerequisite condition (10) does not hold, in which

case we set Q2 = 0.03. Tables 1 and 2 show the resulting values in cases (1) and (2),

respectively. The second column in the tables represents the resulting cases defined in

Proposition 4.3. The notation ∅ in the third column means that the start-up never

invests regardless of the value of the market demand Y (t). Note that Q̃2 = E[X] because

of β1 = 2. In addition, Condition (a) given in Subsection 4.1 is always satisfied in the

examples. The tables show the losses W (y) for different initial values y = 1, 4 and 10.

Note that, for Q2 = 0.01, y = 1, 4 and 10 lie in the waiting region 1, the investment

region, and the waiting region 2 in Figure 2, respectively.

In Table 1, the losses W (1) and W (4) are zero for several distributions of X in spite

of the misestimation. This corresponds to the fact that for a small initial market demand

no loss occurs, which is shown in Proposition 4.3 and Corollary 4.1. For a large initial

market demand, comparing W (10) = 1.55, 0.41 and 0.23, 0.097 in Table 1 suggests that

the loss in the overestimation case (O.3) is smaller than that in the underestimation

case (U.3). Taking into account that the value in the case of complete information is

V (10, 0.01) = 0.55, even a small estimation error (in particular, in the underestimation

case) causes a serious problem to the start-up. Indeed, the losses W (10) = 1.55 and 0.41

correspond to 280 and 75 percents of V (10, 0.01) = 0.55, respectively. In the case where

the prerequisite condition does not hold, on the other hand, a small estimation error

causes no problem to the start-up. This can be seen from W (y) = 0 in many rows above

and below X = Q2 = 0.03 in Table 2. In fact, the start-up can make a correct judgement

of never investing even if it has a small estimation error.

From the above observation, we obtain the following implications about the start-

up’s investment policy under incomplete information. The start-up needs more accurate

estimation of the large firm’s efficiency in the case where it tries to invest than in the

case of never investing. In addition, the start-up that attempts to invest should make a

modest estimate because the loss in the underestimation case is likely to be much larger

than that in the overestimation case. The start-up’s strategy in the underestimation case

may cause a loss larger than the project value in the case of complete information, and

therefore its confident investment policy is excessively risky.

Finally, we show interesting numerical comparative static results with respect to the
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volatility σ in the underlying market demand Y (t). We set the large firm’s efficiency

Q2 = 0.01. Figure 3 illustrates the start-up’s value function V (y; Q2 = 0.01) in the

case of complete information for σ = 0, 0.1, 0.2 and 0.3. For an initial value around

the investment region (approximately [1.5, 4.5] in Figure 3) a lower volatility generates a

higher value of the start-up’s investment, while for an initial value in the waiting regions

(especially, the waiting region 2 such as y ≈ 10) a higher volatility is beneficial to the

start-up.

This result is intuitive. Note that the possibilities of both firm’s entries in the waiting

regions become smaller as the volatility in the market becomes lower. In other words,

the value of the option to delay the investment is monotonic with respect to the volatility

in the market. Then, a lower volatility has both positive and negative effects on the

start-up. The positive one is that a lower volatility leads the large firm to delay its entry.

The negative one is that a lower volatility decreases the start-up’s option value of waiting.

Since around the investment region the start-up can invest soon even if the volatility in

the market is small, the negative effect in the start-up’s waiting region is not important.

As a result, around the investment region, a lower volatility increases the start-up’s value

by the positive effect. Far from the investment region, on the other hand, the negative

effect is dominant, because the start-up tends to wait for a long time until its investment.

In consequence, far from the investment region, a lower volatility decreases the start-up’s

value by the negative effect.

Figure 4 illustrates the relative loss W (y)/V (y; Q2) of the start-up with incomplete

information X = [0.005, 0.01] and [0.01, 0.015] for various values of σ. As shown in

Proposition 4.3 and Corollary 4.1, the relative loss is zero for a small initial value y in

Figure 4. Observe that, for a large initial value y, the relative loss is constant with

respect to y. This is because W (y)/V (y; Q2) equals (B(Q2) − B̃(Q̃2))y
β2/B(Q2)y

β2 =

(B(Q2)− B̃(Q̃2))/B(Q2) by Proposition 4.3. In Figure 4, a lower volatility increases both

the relative loss W (y)/V (y; Q2) and the absolute loss W (y). We observed that the same

property holds for most other parameter values than the presented example.

We can interpret this property as follows. The start-up’s investment decision involves

two different types of uncertainty; namely the market volatility and the estimation of the

large firm’s efficiency. Intuitively, in the market with high volatility, a small estimation
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error does not make a big difference in the loss. However, if the uncertainty in the market

demand is less, the start-up’s payoff is more decisively determined by its investment policy.

Naturally, the start-up also needs to take a more accurate investment policy.

Table 1: The loss for uniform distributions X and Q2 = 0.01.

X Case Investment region W (1) W (4) W (10)

[0.0025, 0.0075] (U.3) [2, 10.14] 0 0 1.55

[0.005, 0.01] (U.3) [2, 6.57] 0 0 0.41

Q2 = 0.01 (C) [2, 4.77] 0 0 0

[0.01, 0.015] (O.3) [2, 3.69] 0 0.089 0.097

[0.0125, 0.0175] (O.3) [2, 2.95] 0 0.36 0.23

[0.015, 0.02] (O.3) [2, 2.42] 0 0.58 0.34

[0.0175, 0.0225] (O.2) ∅ 0.13 1 0.55

[0.02, 0.025] (O.2) ∅ 0.13 1 0.55

Table 2: The loss for uniform distributions X and Q2 = 0.03.

X Case Investment region W (1) W (4) W (10)

[0.0125, 0.0175] (U.2) [2, 2.95] 0.13 0.74 0.37

[0.015, 0.02] (U.2) [2, 2.42] 0.13 0.47 0.23

[0.0175, 0.0225] (U.1) ∅ 0 0 0

[0.02, 0.025] (U.1) ∅ 0 0 0

[0.0225, 0.0275] (U.1) ∅ 0 0 0

[0.025, 0.03] (U.1) ∅ 0 0 0

Q2 = 0.03 (C) ∅ 0 0 0

[0.03, 0.035] (O.1) ∅ 0 0 0

[0.0325, 0.0375] (O.1) ∅ 0 0 0
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7 Conclusion

This paper has investigated the effect of incomplete information in the model in which

a start-up with a unique idea and technology pioneers a new market that will be taken

over by a large firm eventually. The main contribution of this paper is to evaluate the

start-up’s loss due to incomplete information about the large firm. The proposed method

could be applied in other real options models involving several firms. The results obtained

in this paper can be summarized as follows.

If the start-up’s efficiency is much better than that of the large firm and the current

market demand cannot generate great profit immediately, then the start-up requires no

further survey on the large firm’s efficiency. On the other hand, information about the

large firm’s efficiency is valuable in the market that can readily generate great profit, even

if the start-up’s efficiency is much better than that of the large firm. In this case, it is

quite likely that the start-up’s immediate investment does not produce much income for

the start-up before the large firm’s entry.

When it is doubtful that the start-up’s efficiency overwhelms that of the large firm,

information about the large firm’s efficiency is always valuable regardless of the current

market demand. The reason for this is that there is a possibility that the investment

opportunity for the start-up does not exist in the market, in addition to the same risk as

in the previous case, that is, the possibility that the start-up obtains little profit before

the large firm’s entry.

Furthermore, under incomplete information, the expected payoff of the start-up in-

vesting at the zero-NPV trigger could become greater than that of the start-up following

the real options approach. In numerical examples, we have also observed some interesting

features of the loss due to incomplete information such as the property that the loss in

the overestimation case tends to be smaller than that in the underestimation case.

In the real world, a small entrepreneurial firm that has a unique idea and technology

but is not competitive in the market may want to sell its idea and technology to a large

firm, rather than pioneering the market by itself. Then, the value function which the

start-up believes can be interpreted as a reward which the start-up demands for its idea

and technology. As revealed in this paper, the value of the investment which the start-up

believes under incomplete information is generally different from the real value of the
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investment. Because of this gap, negotiations between the start-up and the large firm

may not go smoothly. It remains as an interesting issue of future research to reveal the

effect of incomplete information in such a negotiation problem of a firm having an option

to sell its idea and technology to the rival firm.

Appendix A Proof of Proposition 3.1

Taking account of (5), we can compute (3) as follows:

E

[∫ τq
2

τ1

e−ρtD1Y (t)dt− e−ρτ1I1

]

= E

[
e−ρτ1

(
D1E

Y (τ1)

[∫ τq
2

0

e−ρtY (t)dt

]
− I1

)]
(24)

= E

[
e−ρτ1

(
D1E

Y (τ1)

[∫ +∞

0

e−ρtY (t)dt−
∫ +∞

τq
2

e−ρtY (t)dt

]
− I1

)]

= E

[
e−ρτ1

(
D1E

Y (τ1)

[∫ +∞

0

e−ρtY (t)dt− e−ρτq
2 EY (τq

2 )

[∫ +∞

0

e−ρtY (t)dt

]]
− I1

)]
(25)

= E

[
e−ρτ1

(
D1E

Y (τ1)

[∫ +∞

0

e−ρtY (t)dt− e−ρτq
2 max(Y (0), yM(q))

ρ− µ

]
− I1

)]

= E

[
e−ρτ1

(
D1Y (τ1)

ρ− µ
− D1 max(Y (τ1), yM(q))−β1+1Y (τ1)

β1

ρ− µ
− I1

)]
, (26)

where we use the strong Markov property (e.g. see Øksendal (2003)) of the geometric

Brownian motion Y (t) to deduce (24) and (25), and use the formula of the expectation

involving a hitting time (e.g. see Dixit and Pindyck (1994)) to deduce (26). Here, for

a random variable Z, EY (τi)[Z] denotes a random variable G(Y (τi)), where for y′ > 0,

G(y′) is defined as an expectation E[Z] in the case where Y (t) starts at Y (0) = y′. Thus,

problem (4) with X ≡ q is equivalent to supτ1 E [e−ρτ1f(Y (τ1); q)] , where

f(y; q) =
D1y

ρ− µ
− D1 max(y, yM(q))−β1+1yβ1

ρ− µ
− I1. (27)

Consider the case where f(y; q) ≤ 0 for all y > 0. In this case, the value function and

the optimal stopping time are trivially given by V (y; q) = 0 and τ q
1 = +∞, respectively,

for all y > 0. Now, let us derive a necessary and sufficient condition for f(y; q) ≤ 0 to

hold for all y > 0. Since f(y; q) is concave for y ∈ [0, yM(q)] by β1 > 1 and f(y; q) = −I1

holds for y = 0 and y ≥ yM(q), f(y; q) (y > 0) takes the maximum value at y =
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β
−1/(β1−1)
1 yM(q), which is the unique solution of ∂f(y; q)/∂y = 0 for y ∈ [0, yM(q)]. Since

we have f(β
−1/(β1−1)
1 yM(q); q) = D1p(β1, Q1, q)/q by (6), (9) and (27), we can deduce that

p(β1, Q1, q) ≤ 0 is a necessary and sufficient condition for f(y; q) ≤ 0 to hold for all y > 0.

Thus, if p(β1, Q1, q) ≤ 0, we have V (y; q) = 0 and τ q
1 = +∞.

Next, we consider the case where p(β1, Q1, q) > 0. In this case, if we can check that the

right-hand side of (11), denoted φ(y), is a continuously differentiable function satisfying

the following conditions:

σ2y2

2

d2φ

dy2
(y) + µy

dφ

dy
(y)− ρφ(y)




≤ 0 for all y > 0,

= 0 for all y /∈ [yM(Q1), yU(q)],

φ(y)− f(y)




≥ 0 for all y > 0,

= 0 for all y ∈ [yM(Q1), yU(q)],

lim
y↓0

φ(y) = lim
y↑+∞

φ(y) = 0,

φ(y) : twice continuously differentiable at any y 6= yM(Q1), yU(q),

(28)

then we obtain the value function V (y; q) = φ(y) and the optimal stopping time τ q
1 =

inf{t ≥ 0 | Y (t) ∈ [yM(Q1), yU(q)]} via the relation between optimal stopping and varia-

tional inequalities (for details see Øksendal (2003)). Note that the thresholds yM(q) and

yU(q) are defined so that φ(y) is continuously differentiable at the thresholds (i.e, value

matching and smooth pasting, see also Dixit and Pindyck (1994)). Since we can check all

the conditions for φ(y) by direct calculation, we obtain the proposition. ¤

Appendix B Proof of Proposition 4.1

Note that

E

[∫ τX
2

τ1

e−ρtD1Y (t)dt +

∫ +∞

τX
2

e− e−ρτ1I1

]

=

∫ +∞

0

E

[∫ τX
2

τ1

e−ρtD1Y (t)dt− e−ρτ1I1 | X = q

]
dΨX(q)

=

∫ +∞

0

E

[∫ τq
2

τ1

e−ρtD1Y (t)dt− e−ρτ1I1

]
dΨX(q) (29)

=

∫ +∞

0

E
[
e−ρτ1f(Y (τ1); q)

]
dΨX(q) (30)

= E
[
e−ρτ1g(Y (τ1))

]
, (31)
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where ΨX(q) denotes the distribution of X, and f and g are defined by (27) and (15),

respectively. Here, (29) and (31) follow from the independence between X and Y (t), and

(30) follows from the strong Markov property as in Appendix A.

First, we consider the case where g(y) ≤ 0 for all y > 0. In this case, apparently,

the value function and the optimal stopping time are given by V (y) = 0 and τ ∗1 = +∞,

respectively, for all y > 0. Since h(y) ≤ 0 holds for all y > 0 by (17), V (y; Q̃2) = 0 and

τ Q̃2

1 = +∞ hold for all y > 0. This implies V (y) = V (y; Q̃2) and τ ∗1 = τ Q̃2

1 for all y > 0.

Next, let us assume that there exists some ŷ > 0 such that g(ŷ) > 0. We have

V (ŷ; Q̃2) > 0 by Condition (a) (i.e., g(y) ≤ V (y; Q̃2) for all y > 0). Then, we can deduce

that p(y,Q1, Q̃2) > 0, taking into consideration that V (y; Q̃2) = 0 holds for all y > 0

whenever p(y, Q1, Q̃2) ≤ 0 by Proposition 3.1. We have only to check the conditions (28)

with q and f replaced by Q̃2 and g for φ(y) = V (y; Q̃2) (i.e., the right-hand side of (11)

with q replaced by Q̃2). The conditions (28) except for the second can be checked directly

as in Appendix A. Condition (a) ensures φ(y) − g(y) ≥ 0 for all y > 0. By (17) and

(18), for all y ∈ [yM(Q1), yU(Q̃2)], we have φ(y) − g(y) = h(y) − g(y) ≤ 0, where h(y) is

defined by (16). These imply the second condition. Therefore, we obtain V (y) = φ(y)

and τ ∗1 = inf{t ≥ 0 | Y (t) ∈ [yM(Q1), yU(Q̃2)]} via the relation between optimal stopping

and variational inequalities (e.g., see Øksendal (2003)). ¤

Appendix C Proof of Proposition 4.2

We have only to compute the expectation (20). First, we assume p(β1, Q1, Q̃2) ≤ 0. In

this case, we have τ ∗1 = τ Q̃2

1 = +∞ by Propositions 3.1 and 4.1, and hence we have

also τQ2

2 = +∞ by (19). Thus, Ṽ (y) = 0 holds for all y > 0. Next, let us assume

p(β1, Q1, Q̃2) > 0. In this case, we have

τ ∗1 = τ Q̃2

1 = inf{t ≥ 0 | Y (t) ∈ [yM(Q1), yU(Q̃2)]} (32)

by Propositions 3.1 and 4.1. As in Appendix A, by the strong Markov property, (20)

is equal to (26) with τ1 and q replaced by τ ∗1 and Q2, respectively. That is, we have

Ṽ (y) = E
[
e−ρτ∗1 f(Y (τ ∗1 ); Q2)

]
, where f is defined by (27). Since Y (τ ∗1 ) is a constant such
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that

Y (τ ∗1 ) =





yM(Q1) (0 < y < yM(Q1))

y (yM(Q1) ≤ y ≤ yU(Q̃2))

yU(Q̃2) (y > yU(Q̃2))

(33)

by (32), we have

Ṽ (y) = f(Y (τ ∗1 ); Q2)E
[
e−ρτ∗1

]
. (34)

Thus, by applying the formula of the expectation involving a hitting time to (34), we

obtain the formula of Ṽ (y) given in the proposition. ¤
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Décamps, J., T. Mariotti, and S. Villeneuve, 2005, Investment timing under incomplete

information, Mathematics of Operations Research 30, 472–500.

Dixit, A., 1989, Entry and exit decisions under uncertainty, Journal of Political Economy

97, 620–638.

, and R. Pindyck, 1994, Investment Under Uncertainty (Princeton University

Press: Princeton).

27



Grenadier, S., 2002, Option exercise games: an application to the equilibrium investment

strategies of firms, Review of Financial Studies 15, 691–721.

, and N. Wang, 2005, Investment timing, agency, and information, Journal of

Financial Economics 75, 493–533.

Hsu, Y., and B. Lambrecht, 2003, Preemptive patenting under uncertainty and asymmet-

ric information, Working paper.

Huisman, K., 2001, Technology Investment: A Game Theoretic Real Options Approach

(Kluwer Academic Publishers: Boston).

, and P. Kort, 2003, Strategic investment in technological innovations, European

Journal of Operational Research 144, 209–223.

Lambrecht, B., and W. Perraudin, 2003, Real options and preemption under incomplete

information, Journal of Economics Dynamics and Control 27, 619–643.

McDonald, R., and D. Siegel, 1986, The value of waiting to invest, Quarterly Journal of

Economics 101, 707–727.

Nishihara, M., and T. Shibata, 2007, The effects of auditing in a real options model,

Technical Report 2007-1, Department of Applied Mathematics and Physics, Graduate

School of Informatics, Kyoto University.

Øksendal, B., 2003, Stochastic Differential Equations: An Introduction with Applications

6th edition (Springer: Berlin).

Weeds, H., 2002, Strategic delay in a real options model of R&D competition, Review of

Economic Studies 69, 729–747.

28


