
Hybrid Approach with Active Set Identification for

Mathematical Programs with Complementarity Constraints ∗

Gui-Hua Lin† and Masao Fukushima‡

January 2003, Revised June 2004

Abstract. We consider a mathematical program with complementarity constraints (MPCC). Our
purpose is to develop methods that enable us to compute a solution or a point with some kind of station-
arity to MPCC by solving a finite number of nonlinear programs. We apply an active set identification
technique to a smoothing continuation method (Fukushima and Pang, 1999) and propose a hybrid algo-
rithm for solving MPCC. We also develop two kinds of modifications, one of which makes use of an index
addition strategy and the other adopts an index subtraction strategy. We show that, under reasonable
assumptions, all the proposed algorithms possess a finite termination property. Further discussions and
computational results are given as well.

Key Words. mathematical program with complementarity constraints, MPCC-LICQ, weak second-

order necessary condition, (B-, M-, C-) stationarity, asymptotically weak nondegeneracy, identification

function.

1 Introduction

Mathematical programs with equilibrium constraints (MPECs) have been receiving much at-
tention in the optimization community. There are many practical problems in engineering and
economics that can be modelled as MPECs. MPECs also find applications in mathematical

programming itself, for example, through reformulation of bilevel programming. For further
applications, see the monograph [20] and the references therein.

In this paper, we consider the following mathematical program with complementarity con-
straints (MPCC), which constitutes an important subclass of MPECs:

min f(z)

s.t. g(z) ≤ 0, h(z) = 0

G(z) ≥ 0, H(z) ≥ 0

G(z)TH(z) = 0,

(P)

where f : <n → <, g : <n → <p, h : <n → <q, and G, H : <n → <m are all twice continuously
differentiable functions. The major difficulty in solving problem (P) is that its constraints

∗This work was supported in part by the Scientific Research Grant-in-Aid from the Ministry of Education,
Science, Sports, and Culture of Japan.

†Department of Applied Mathematics, Dalian University of Technology, Dalian 116024, China./ Department
of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan.
E-mail: ghlin@amp.i.kyoto-u.ac.jp.

‡Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Kyoto
606-8501, Japan. E-mail: fuku@amp.i.kyoto-u.ac.jp.

1

fail to satisfy a standard constraint qualification at any feasible point [4], so that standard
methods are not guaranteed to solve this problem. There have been proposed several approaches

such as sequential quadratic programming approach [9, 16, 20], implicit programming approach
[3, 20], penalty function approach [12, 13, 19, 20], active-set approach [11], and reformulation

approach [7, 10, 17, 18, 22]. In particular, Fukushima and Pang [10] considered a smoothing
continuation method and showed, under the MPCC-linear independence constraint qualification

and an additional condition called the asymptotically weak nondegeneracy, that an accumulation
point of KKT points satisfying the weak second-order necessary conditions for the perturbed

problems is a B-stationary point of the original problem. Subsequently, similar schemes were
presented by Scholtes [22] and Lin and Fukushima [17, 18]. However, these methods require
to solve an infinite sequence of nonlinear programs. The purpose of this paper is to develop

methods that enable us to compute a solution or a point with some kind of stationarity to
problem (P) by solving a finite number of nonlinear programs.

The rest of the paper is organized as follows. In the next section, we recall some basic concepts
for problem (P) and ordinary nonlinear programming problems. In Section 3, we first introduce

the smoothing continuation method [10] and then, we apply an active set identification technique
to the method and present our hybrid algorithms. A comprehensive convergence analysis is also

included. We make some remarks in Section 4 and report our numerical experience in Section
5. Throughout the paper, we let F denote the feasible region of problem (P) and, for a function

F : <n → <m and a given vector z ∈ <n, let

IF (z) := {i | Fi(z) = 0}

stand for the active index set of F at z.

2 Preliminaries

In this section, we state some basic concepts for MPCC and ordinary nonlinear programming
problems. We first consider the standard nonlinear programming problem

min f(z)

s.t. ci(z) ≤ 0, i = 1, · · · , l, (2.1)

ci(z) = 0, i = l + 1, · · · , s,

where f : <n → < and c : <n → <s are twice continuously differentiable.

Definition 2.1 We say z to be a stationary point of problem (2.1) if it is feasible to (2.1) and

there exists a Lagrange multiplier vector λ ∈ <s such that

∇f(z) + ∇c(z)λ = 0,

λi ≥ 0, λici(z) = 0, i = 1, · · · , l.

Definition 2.2 Let z be a stationary point of problem (2.1) and λ be a Lagrange multiplier
vector corresponding to z. We say the weak second-order necessary condition (WSONC) holds

at z if we have

dT
(

∇2f(z) +
s

∑

i=1

λi∇2ci(z)
)

d ≥ 0

2

for any d ∈ T (z) :=
{

d ∈ <n | dT∇ci(z) = 0, ∀ i ∈ Ic(z)
}

.

Next, we recall some concepts related to problem (P).

Definition 2.3 The MPCC-linear independence constraint qualification (MPCC-LICQ) is said

to hold at z̄ ∈ F if the set of vectors
{

∇gl(z̄),∇hr(z̄),∇Gi(z̄),∇Hj(z̄) |

l ∈ Ig(z̄), r = 1, · · · , q, i ∈ IG(z̄), j ∈ IH(z̄)
}

is linearly independent.

This condition is not particularly stringent [23] and has been assumed often in the litera-

ture on MPCCs [10, 12, 13, 17, 22]. Note that this definition is different from the standard
definition of LICQ in nonlinear programming theory that would require the gradient of the

function G(z)TH(z) be linearly independent of the above vectors, which cannot happen in any
case actually.

In the study of MPCCs, there are several kinds of stationarity defined for problem (P).

Definition 2.4 We say z̄ ∈ F is a Bouligand or B-stationary point of problem (P) if it satisfies

dT∇f(z̄) ≥ 0, ∀d ∈ T (z̄,F), (2.2)

where
T (z̄,F) := {d ∈ <n| tk(z

k − z̄) → d, zk → z̄, zk ∈ F , tk ≥ 0, k = 1, 2, · · ·}
stands for the tangent cone of F at z̄.

Definition 2.5 [21] (1) A vector z̄ ∈ F is said to be a Clarke or C-stationary point of (P) if
there exist multiplier vectors λ̄g ∈ <p, λ̄h ∈ <q, and λ̄G, λ̄H ∈ <m such that

∇f(z̄) + ∇g(z̄)λ̄g + ∇h(z̄)λ̄h −∇G(z̄)λ̄G −∇H(z̄)λ̄H = 0, (2.3)

λ̄g ≥ 0, λ̄T
g g(z̄) = 0, (2.4)

λ̄G,i = 0, i /∈ IG(z̄), (2.5)

λ̄H,i = 0, i /∈ IH(z̄), (2.6)

λ̄G,iλ̄H,i ≥ 0, ∀i ∈ IG(z̄) ∩ IH(z̄). (2.7)

(2) z̄ ∈ F is called a Mordukhovich or M-stationary point of (P) if there exist multiplier

vectors λ̄g ∈ <p, λ̄h ∈ <q, λ̄G, λ̄H ∈ <m such that (2.3)–(2.6) hold and

either λ̄G,i > 0, λ̄H,i > 0 or λ̄G,iλ̄H,i = 0, ∀i ∈ IG(z̄) ∩ IH(z̄). (2.8)

In order to get a desirable stationary point of (P), some additional conditions need to be
assumed. Here, we introduce one of them.

Definition 2.6 Let z̄ ∈ F . If there exist multiplier vectors λ̄g, λ̄h, λ̄G, and λ̄H satisfying (2.3)–
(2.6) and

λ̄G,iλ̄H,i 6= 0, i ∈ IG(z̄) ∩ IH(z̄), (2.9)

we say that the upper-level strict complementarity (ULSC) condition holds at z̄.

It is obvious that any M-stationary point satisfying the ULSC condition must be B-stationary
to problem (P).

3

3 Hybrid Algorithms for MPCC

As mentioned earlier, the aim of this paper is to develop methods that enable us to compute
a solution or some kind of stationary points of problem (P) by solving a finite sequence of

nonlinear programs, unlike many existing methods that require to solve an infinite sequence of
nonlinear programs. To this end, we apply an active set identification technique to a smoothing

continuation method [10] and present some hybrid algorithms in this section. Further discussions
and some extensions will be given in Section 4.

3.1 Smoothing continuation method for MPCC

Consider the smoothing continuation method [10] that uses the perturbed Fischer-Burmeister
function

φε(a, b) := a + b −
√

a2 + b2 + 2ε2,

where ε ≥ 0. Define the function Φε : <n → <m by

Φε(z) :=
(

φε(G1(z), H1(z)), · · · , φε(Gm(z), Hm(z))
)T

and consider the nonlinear programming problem

min f(z)

s.t. Φε(z) = 0,

g(z) ≤ 0, h(z) = 0.

(Pε)

Note that (P0) is equivalent to problem (P) and Φε is differentiable everywhere for any ε > 0.
We assume that problem (Pε) has a solution (or a stationary point) zε for each small scalar

ε > 0. We may expect to find a solution or a point with some kind of stationarity to problem
(P) by tracing the trajectory {zε} as ε → 0. Suppose that {εk} is a positive sequence converging

to zero. The following convergence result is given in [10].

Theorem 3.1 Let zk be a stationary point of problem (Pεk
) and the sequence {zk} converge to

z∗ as εk → 0. Suppose that the WSONC holds at each zk, the MPCC-LICQ holds at z∗, and
{zk} is asymptotically weakly nondegenerate. Then z∗ is B-stationary to problem (P).

We now recall the asymptotically weak nondegeneracy [10], which is assumed in the above
theorem and will also be employed in the subsequent analysis. Suppose {zk} converges to z∗ as

εk → 0. Then z∗ ∈ F . It can be shown [10] that, for each i ∈ IG(z∗) ∩ IH(z∗),

∇Φεk,i(z
k) =

Hi(z
k)

Gi(zk) + Hi(zk)
∇Gi(z

k) +
Gi(z

k)

Gi(zk) + Hi(zk)
∇Hi(z

k). (3.1)

Therefore, every accumulation point r of
{

∇Φεk,i(z
k)

}

can be represented as

r = ξi(r)∇Gi(z
∗) + ηi(r)∇Hi(z

∗) (3.2)

for some (ξi(r), ηi(r)) with (1 − ξi(r))
2 + (1 − ηi(r))

2 ≤ 1. We say that {zk} is asymptotically

weakly nondegenerate if, for each i ∈ IG(z∗) ∩ IH(z∗), neither ξi(r) nor ηi(r) vanishes for any

accumulation point r of
{

∇Φεk,i(z
k)

}

.

4

Roughly speaking, the asymptotically weak nondegeneracy of {zk} means that, for each

i ∈ IG(z∗) ∩ IH(z∗), Gi(z
k) and Hi(z

k) approach zero in the same order of magnitude. This
property is obviously weaker than the nondegeneracy (lower-level strict complementarity), be-

cause it vacuously holds when z∗ is nondegenerate. It is even weaker than the upper-level strict
complementarity (ULSC) condition, which is often employed in the literature on MPCC, see

[12, 13, 17, 18, 22].
In addition, Lin and Fukushima [17, 18] have established some new convergence results for

their relaxation methods for MPCC. We can prove that the smoothing continuation method
possesses similar convergence properties. Here, we state one of such results.

Theorem 3.2 Let zk be a stationary point of problem (Pεk
) and, for each k, (λk

g , λ
k
h, λ

k
Φ) be

a multiplier vector corresponding to zk. Suppose that the sequence {zk} converges to z∗ as
εk → 0 and, for each k, ∇2

zLεk
(zk, λk

g, λ
k
h, λ

k
Φ) is bounded below with constant αk ≥ 0 on the

corresponding tangent space Tεk
(zk), which means

dT∇2
zLεk

(zk, λk
g, λ

k
h, λ

k
Φ)d ≥ −αk||d||2, ∀d ∈ Tεk

(zk), (3.3)

where

Lε(z, λg, λh, λΦ) := f(z) + λT
g g(z) + λT

h h(z) + λT
ΦΦε(z),

Tε(z) :=
{

d ∈ <n | dT∇Φε,i(z) = 0, i = 1, · · · , m;

dT∇gl(z) = 0, l ∈ Ig(z);

dT∇hr(z) = 0, r = 1, · · · , q
}

.

If the sequence {αk} is bounded, {zk} is asymptotically weakly nondegenerate, and the MPCC-
LICQ holds at z∗, then z∗ is a B-stationary point of problem (P).

Actually, the condition that problem (Pεk
) satisfies the WSONC at zk for each k means

that ∇2
zLεk

(zk, λk
g, λ

k
h, λ

k
Φ) is bounded below with constant 0. In consequence, Theorem 3.1 is

actually a corollary of Theorem 3.2. Note that, for the matrix ∇2
zLεk

(zk, λk
g, λ

k
h, λ

k
Φ), there must

exist a number αk such that (3.3) holds. For example, any nonnegative scalar αk such that
(−αk) is less than the smallest eigenvalue of ∇2

zLεk
(zk, λk

g, λ
k
h, λ

k
Φ) must satisfy (3.3). However,

the WSONC means that the matrix should have some kind of semi-definiteness on the tangent
space Tεk

(zk). Therefore, the assumptions in Theorem 3.2 are weaker than the conditions of

Theorem 3.1. Since the proof of Theorem 3.2 is similar to that of Theorem 3.1, it is omitted
here, see [10].

3.2 A hybrid algorithm for MPCC

We first introduce an active set identification technique for MPCC. Active set identification
plays an important role in optimization theory [1, 2, 5, 6, 25]. Accurate identification of active

constraints is important from both theoretical and practical points of view. For problem (P),
by means of active set identification, the combinatorial constraints

G(z) ≥ 0, H(z) ≥ 0, G(z)TH(z) = 0 (3.4)

may be replaced by some equality and/or inequality constraints that are easier to deal with.

5

For a point z̄ ∈ F , let α(z̄), β(z̄) and γ(z̄) be the index sets defined by

α(z̄) := {i | Gi(z̄) > 0, Hi(z̄) = 0} ,

β(z̄) := {i | Gi(z̄) = 0, Hi(z̄) = 0} ,

γ(z̄) := {i | Gi(z̄) = 0, Hi(z̄) > 0} ,

respectively. Obviously, α(z̄) ∪ β(z̄) ∪ γ(z̄) = {1, · · · , m} and these index sets are mutually
disjoint. We call z̄ nondegenerate if β(z̄) = ∅ and degenerate if β(z̄) 6= ∅. Let a sequence {zk}
be generated so that it converges to z∗ ∈ F . If z∗ is nondegenerate, it is generally not difficult
to identify the correct index sets finitely. However, when z∗ is degenerate, it is not necessarily

easy to identify the active index sets. In the following, we will particularly be interested in the
case where {zk} is convergent to a degenerate point z∗ ∈ F .

Let {εk} be a positive sequence converging to zero and let zk stand for a solution or a
stationary point of problem (Pεk

) for each k. Suppose that {zk} converges to some z∗ throughout

Section 3. Note that
Gi(z

k) > 0, Hi(z
k) > 0, Gi(z

k)Hi(z
k) = ε2k (3.5)

for each k and each i. We try to estimate the index sets α(z∗), β(z∗) and γ(z∗) by some index
sets αk, βk and γk, respectively, which are obtained from zk and satisfy αk∪βk∪γk = {1, · · · , m}
with αk, βk, γk being mutually disjoint. Given the index sets αk, βk and γk, we then solve the
nonlinear programming problem

min f(z)

s.t. Gi(z) ≥ 0, Hi(z) = 0, i ∈ αk,

Gi(z) = 0, Hi(z) = 0, i ∈ βk, (3.6)

Gi(z) = 0, Hi(z) ≥ 0, i ∈ γk,

g(z) ≤ 0, h(z) = 0.

This problem is no longer an MPCC and hence easier to deal with. Denote by ẑk a stationary

point of problem (3.6). Obviously, we always have βk ⊆ β(ẑk), and β(ẑk) may contain some i ∈
αk with Gi(ẑ

k) = 0 or some i ∈ γk with Hi(ẑ
k) = 0. If the Lagrange multipliers corresponding

to the constraints

Gi(z) ≥ 0, Hi(z) = 0, i ∈ αk ∩ β(ẑk),

Gi(z) = 0, Hi(z) = 0, i ∈ βk, (3.7)

Gi(z) = 0, Hi(z) ≥ 0, i ∈ γk ∩ β(ẑk)

are all nonnegative, then ẑk is a B-stationary point of problem (P) under the MPCC-LICQ
assumption at the point [11]. Therefore, assuming that (3.6) can be solved exactly, we may

terminate the method in finite steps, unlike the method in [10], which needs to solve an infinite
sequence of nonlinear programs.

The key to success is to define the index sets αk, βk and γk such that

αk = α(z∗), βk = β(z∗), γk = γ(z∗) (3.8)

for all k large enough. To this end, we may use an identification function ρ : <n → [0, +∞)
satisfying

lim
k→∞

ρ(zk) = 0 (3.9)

6

and, for all k large enough,

max
i∈β(z∗)

{

Gi(z
k), Hi(z

k)
}

≤ ρ(zk), (3.10)

max
i∈α(z∗)∪γ(z∗)

{

min{Gi(z
k), Hi(z

k)}
}

≤ ρ(zk), (3.11)

and consider the following hybrid algorithm that combines the smoothing continuation method
with an active set identification technique.

Algorithm H:

Step 0: Choose ε0 > 0 and set k := 0.

Step 1: Solve problem (Pεk
) and denote by zk one of its stationary points. Set

αk :=
{

i
∣

∣

∣ Gi(z
k) > ρ(zk), Hi(z

k) ≤ ρ(zk)
}

, (3.12)

βk :=
{

i
∣

∣

∣ Gi(z
k) ≤ ρ(zk), Hi(z

k) ≤ ρ(zk)
}

, (3.13)

γk :=
{

i
∣

∣

∣ Gi(z
k) ≤ ρ(zk), Hi(z

k) > ρ(zk)
}

. (3.14)

If αk ∪ βk ∪ γk = {1, · · · , m}, go to Step 2. Otherwise, go to Step 4.

Step 2: Solve problem (3.6) to get a stationary point ẑk and go to Step 3.

Step 3: If the Lagrange multipliers corresponding to the constraints (3.7) are all nonnegative,

then terminate. Else, go to Step 4.

Step 4: Choose an εk+1 ∈ (0, εk) and let k := k + 1. Go to Step 1.

Next, we make some remarks on the identification function ρ and Algorithm H.

First of all, we have that, if β(z∗) 6= ∅,

max
i∈α(z∗)∪γ(z∗)

{

min{Gi(z
k), Hi(z

k)}
}

< min
i∈β(z∗)

{

Gi(z
k), Hi(z

k)
}

(3.15)

holds for all k large enough as long as α(z∗) ∪ γ(z∗) 6= ∅. In fact, we have from (3.5) that

lim
k→∞

ε2k
min{Gi(zk), Hi(zk)} = lim

k→∞
max{Gi(z

k), Hi(z
k)}

= 0, i ∈ β(z∗)

and

lim
k→∞

ε2k
min{Gj(zk), Hj(zk)} = lim

k→∞
max{Gj(z

k), Hj(z
k)}

= Gj(z
∗) + Hj(z

∗) > 0, j ∈ α(z∗) ∪ γ(z∗).

In consequence,

lim
k→∞

min{Gj(z
k), Hj(z

k)}
min{Gi(zk), Hi(zk)} = 0 (3.16)

7

holds for each i ∈ β(z∗) and each j ∈ α(z∗) ∪ γ(z∗) and hence we have (3.15). This inequality
means that condition (3.10) implies condition (3.11) for all k sufficiently large if β(z∗) 6= ∅ and

α(z∗) ∪ γ(z∗) 6= ∅.
Moreover, it is obvious that {αk, βk, γk} defined by (3.12)–(3.14) is mutually disjoint for each

k. On the other hand, conditions (3.10) and (3.11) ensure that, when k is sufficiently large,

min{Gi(z
k), Hi(z

k)} ≤ ρ(zk), ∀i.

This means αk ∪ βk ∪ γk = {1, · · · , m} and so {αk, βk, γk} defined in Step 1 is a partition of
{1, · · · , m} for all k sufficiently large.

Furthermore, we have from (3.9) that, when k is sufficiently large,

αk ⊇ α(z∗), βk ⊆ β(z∗), γk ⊇ γ(z∗).

In addition, it follows from (3.10) and (3.13) that β(z∗) ⊆ βk for all k sufficiently large. Note
that both {αk, βk, γk} and {α(z∗), β(z∗), γ(z∗)} are partitions of {1, · · · , m}. Therefore, (3.8)

holds when k is large enough.
The above analysis indicates that Algorithm H may possess a finite termination property.

The key question is, of course, how to define the identification function ρ. This is not a trivial
task because the function may depend on the unknown point z∗ generally. Next, we consider

the case where {zk} is asymptotically weakly nondegenerate.

Theorem 3.3 Suppose the sequence {zk} generated by Algorithm H is asymptotically weakly

nondegenerate. Let

ρ1(z) := τ ||min(G(z), H(z))||σ, (3.17)

where τ > 0 and σ ∈ (0, 1) are constants and

min(G(z), H(z)) :=
(

min{G1(z), H1(z)}, · · · , min{Gm(z), Hm(z)}
)T

. (3.18)

Then (3.9)–(3.11) hold with ρ = ρ1, i.e., the function ρ1 can serve as an identification function.

Proof: Note that the complementarity constraints (3.4) are equivalent to ρ1(z) = 0. By the
fact that {zk} is convergent to z∗ ∈ F and the continuity of ρ1, we have

lim
k→∞

ρ1(z
k) = ρ1(z

∗) = 0.

Therefore, condition (3.9) holds with ρ = ρ1. On the other hand, for any i ∈ α(z∗) ∪ γ(z∗), we
have

min
{

Gi(z
k), Hi(z

k)
}

≤ ||min(G(zk), H(zk))|| ≤ ρ1(z
k)

for all k sufficiently large, where the first inequality follows from (3.18) and the second inequality
follows from the fact that {||min(G(zk), H(zk))||} is convergent to 0 and the constant σ lies in

the interval (0, 1). This means that (3.11) with ρ = ρ1 holds when k is sufficiently large.
We next prove (3.10) with ρ = ρ1 holds when k is sufficiently large. We may assume

β(z∗) 6= ∅, because (3.10) holds vacuously if β(z∗) is empty. Let i ∈ β(z∗). Since the set

of accumulation points of the sequence
{

∇Φεk,i(z
k)

}

is compact, by the asymptotically weak

nondegeneracy of {zk}, the set of the coefficient pairs in (3.2) is a compact subset of

<2
++ :=

{

(ξ, η)T ∈ <2 | ξ > 0, η > 0
}

.

8

Then, by (3.1) and (3.2), there exist positive constants ai < bi such that

ai ≤
Gi(z

k)

Hi(zk)
≤ bi, ∀k.

Let a := mini∈β(z∗) ai and b := maxi∈β(z∗) bi. It follows that

0 < a ≤ Gi(z
k)

Hi(zk)
≤ b (3.19)

for each k and each i ∈ β(z∗). We then have from (3.19) that

Gi(z
k) ≤ bHi(z

k), Hi(z
k) ≤ a−1Gi(z

k)

and so
max{Gi(z

k), Hi(z
k)} ≤ (a−1 + b) min{Gi(z

k), Hi(z
k)} (3.20)

for each k and each i ∈ β(z∗). By (3.20) and (3.18), we have

max
{

Gi(z
k), Hi(z

k)
}

≤ (a−1 + b)|| min(G(zk), H(zk))||
≤ ρ1(z

k)

for all k sufficiently large, where the last inequality follows from the same facts as above. This

completes the proof of (3.10) and so the function ρ1 given by (3.17) can serve as an identification
function. 2

Theorem 3.4 Suppose that the sequence {zk} generated by Algorithm H is asymptotically weakly
nondegenerate. Then the function

ρ2(z) := τ ||Φ0(z)||σ, τ > 0, σ ∈ (0, 1) (3.21)

is an identification function.
Proof: Noting that, for each i and each k,

2

2 +
√

2
||min(G(zk), H(zk))|| ≤ ||Φ0(z

k)||

≤ (2 +
√

2)||min(G(zk), H(zk))||

(see [24]), we have

τ

(

2

2 +
√

2

)σ

||min(G(zk), H(zk))||σ ≤ ρ2(z
k)

≤ τ(2 +
√

2)σ||min(G(zk), H(zk))||σ.

(3.22)

Let

ρ̂1(z) := τ

(

2

2 +
√

2

)σ

||min(G(z), H(z))||σ,

ρ̄1(z) := τ(2 +
√

2)σ||min(G(z), H(z))||σ.

9

By Theorem 3.3, both ρ̂1 and ρ̄1 are identification functions for Algorithm H. As a result,

condition (3.9) holds with ρ̄1. This, together with the second inequality in (3.22), implies that
condition (3.9) holds with ρ = ρ2. On the other hand, the first inequality in (3.22), together

with the fact that conditions (3.10) and (3.11) with ρ = ρ̂1 hold for all k sufficiently large, means
that (3.10) and (3.11) hold with ρ = ρ2 when k is sufficiently large. In consequence, the function

ρ2 satisfies conditions (3.9)–(3.11). This completes the proof. 2

The next lemma indicates that problem (Pε) satisfies the standard LICQ under some appro-
priate assumptions, unlike problem (P), which fails to satisfy any constraint qualification at any

feasible point. A proof of the lemma may be found in [10].

Lemma 3.1 If the MPCC-LICQ holds at z∗, then there exist a neighborhood U(z∗) of z∗ and

a positive constant ε∗ such that, for any ε ∈ (0, ε∗), problem (Pε) satisfies the standard LICQ at
any feasible point in U(z∗).

Summarizing the above arguments, we obtain the following concluding result.

Theorem 3.5 Let σ ∈ (0, 1), τ > 0, and ρ be ρ1 defined by (3.17) or ρ2 defined by (3.21).
Suppose that the sequence {zk} of stationary points of problems (Pεk

) converges to z∗ as εk → 0,
the MPCC-LICQ holds at z∗, and the sequence {zk} is asymptotically weakly nondegenerate.

Then, for all k sufficiently large, we have
(i) problem (Pεk

) satisfies the standard LICQ at zk;

(ii) the sets αk, βk, and γk defined by (3.12), (3.13), and (3.14) satisfy (3.8).

This theorem indicates that, by means of the technique introduced above, we can identify the

active sets α(z∗), β(z∗), and γ(z∗) in a finite number of iterations under some mild conditions.
As a result, if the problem

min f(z)

s.t. Gi(z) ≥ 0, Hi(z) = 0, i ∈ α(z∗),

Gi(z) = 0, Hi(z) = 0, i ∈ β(z∗), (3.23)

Gi(z) = 0, Hi(z) ≥ 0, i ∈ γ(z∗),

g(z) ≤ 0, h(z) = 0

can be solved exactly, we may expect that Algorithm H terminates in finite steps. In particular, if
z∗ is a stationary point obtained by solving (3.23), then, under the assumptions of either Theorem

3.1 or Theorem 3.2, the algorithm terminates in a finite number of iterations by producing a
B-stationary point of problem (P). Note that it is possible that the algorithm terminates by

producing a B-stationary point of (P) before we solve problem (3.23).

Remark 3.1 In order to ensure αk ∪ βk ∪ γk = {1, · · · , m} in Step 1 for each k, we may define

βk := {1, · · · , m} \ (αk ∪ γk)

instead of (3.13) in Algorithm H.

10

Remark 3.2 Under the assumption of asymptotically weak nondegeneracy of {zk}, we may

define {αk, βk, γk} in a different manner in Step 1. For example, we may put

αk :=
{

i
∣

∣

∣ Gi(z
k) >

√
εk, Hi(z

k) ≤ √
εk

}

, (3.24)

βk :=
{

i
∣

∣

∣ Gi(z
k) ≤ √

εk, Hi(z
k) ≤ √

εk

}

, (3.25)

γk :=
{

i
∣

∣

∣ Gi(z
k) ≤ √

εk, Hi(z
k) >

√
εk

}

(3.26)

instead of (3.12)–(3.14). In fact, the proof of Theorem 3.3 indicates that there exist two positive

numbers a and b such that (3.19) holds for each i ∈ β(z∗) and each k. Therefore, by the equality
in (3.5) and the asymptotically weak nondegeneracy, we deduce

Gi(z
k) = O(εk), Hi(z

k) = O(εk), i ∈ β(z∗), (3.27)

min{Gi(z
k), Hi(z

k)} = O(ε2k), i ∈ α(z∗) ∪ γ(z∗). (3.28)

Since {√εk} approaches zero slower than both {εk} and {ε2k}, we have from (3.27)–(3.28) that

min{Gi(z
k), Hi(z

k)} ≤ √
εk

for each i and each k sufficiently large. This means αk ∪ βk ∪ γk = {1, · · · , m} when k is
sufficiently large. Noticing that {αk, βk, γk} defined by (3.24)–(3.26) is mutually disjoint for

each k, we have that {αk, βk, γk} given by (3.24)–(3.26) is a partition of {1, · · · , m} for all k
sufficiently large. On the other hand, it is obvious that, when k is sufficiently large,

αk ⊇ α(z∗), βk ⊆ β(z∗), γk ⊇ γ(z∗).

Moreover, it follows from (3.25) and (3.27) that β(z∗) ⊆ βk for all k sufficiently large. Note

that both {αk, βk, γk} and {α(z∗), β(z∗), γ(z∗)} are partitions of {1, · · · , m}. Therefore, (3.8)
holds when k is large enough. So, we may employ (3.24)–(3.26) instead of (3.12)–(3.14) in

Step 1 of Algorithm H. From the computational point of view, (3.24)–(3.26) are simpler than
(3.12)–(3.14).

3.3 Modified hybrid method with index addition strategy

For Algorithm H, the asymptotically weak nondegeneracy condition is a key assumption. Al-
though this condition is not excessively stringent because it is implied by the ULSC condition,

it is certainly desirable to lessen the required assumptions. In this subsection, we introduce a
modified method with index addition strategy and in the next subsection, we describe another

method with the converse strategy. Both of these two methods do not require the assumption
of asymptotically weak nondegeneracy.

Let ρ be a function defined by (3.17) or (3.21) with τ > 0 and σ ∈ (0, 1).

Algorithm HIA:

Step 0: Choose θ0 > 0 and ε0 > 0. Set k := 0.

11

Step 1: Solve problem (Pεk
) to obtain a stationary point zk and set

αk
0 :=

{

i
∣

∣

∣ Gi(z
k) > ρ(zk), Hi(z

k) ≤ ρ(zk)
}

, (3.29)

βk
0 :=

{

i
∣

∣

∣ Gi(z
k) ≤ ρ(zk), Hi(z

k) ≤ ρ(zk)
}

, (3.30)

γk
0 :=

{

1, · · · , m
}

\
(

αk
0 ∪ βk

0

)

, (3.31)

δk
0 := +∞,

and j := 0. Go to Step 2.

Step 2: Solve the problem

min f(z)

s.t. Gi(z) ≥ 0, Hi(z) = 0, i ∈ αk
j ,

Gi(z) = 0, Hi(z) = 0, i ∈ βk
j , (3.32)

Gi(z) = 0, Hi(z) ≥ 0, i ∈ γk
j ,

g(z) ≤ 0, h(z) = 0

to get a stationary point ẑk
j .

Step 3: If, in (3.32), the Lagrange multipliers corresponding to the constraints

Gi(z) ≥ 0, Hi(z) = 0, i ∈ αk
j ∩ β(ẑk

j),

Gi(z) = 0, Hi(z) = 0, i ∈ βk
j , (3.33)

Gi(z) = 0, Hi(z) ≥ 0, i ∈ γk
j ∩ β(ẑk

j)

are all nonnegative, then terminate. Else, if there is an î ∈ αk
j ∪ γk

j such that

min
i∈αk

j∪γk
j

{

max
{

Gi(z
k), Hi(z

k)
}

}

= max
{

Gî(z
k), Hî(z

k)
}

< θk, (3.34)

then set

δk
j+1 := min

{

δk
j ,

1

2
min

{

Gi(ẑ
k
j) + Hi(ẑ

k
j) | i ∈ α(ẑk

j) ∪ γ(ẑk
j)

}

}

(3.35)

and

αk
j+1 := αk

j \ {̂i}, (3.36)

βk
j+1 := βk

j ∪ {̂i}, (3.37)

γk
j+1 := γk

j \ {̂i}, (3.38)

j := j + 1

and go to Step 2. Otherwise, let jk := j and δk := δk
j and go to Step 4.

Step 4: Choose εk+1 ∈ (0, εk) and set θk+1 := min
{

θk, δk

}

. Go to Step 1 with k := k + 1.

12

The next theorem describes the relations between the sets {αk
j , β

k
j , γk

j }, j = 0, 1, · · · , jk, and

{α(z∗), β(z∗), γ(z∗)}.

Theorem 3.6 Suppose that the sequence {zk} generated by Algorithm HIA converges to z∗ as

εk → 0. Then there is an integer k0 ≥ 0 such that, for any k ≥ k0,
(i) αk

0 ⊇ α(z∗), βk
0 ⊆ β(z∗), γk

0 ⊇ γ(z∗);
(ii) if β(z∗) = ∅, namely, z∗ is nondegenerate, then we have

αk
0 = α(z∗), βk

0 = ∅, γk
0 = γ(z∗); (3.39)

(iii) if β(z∗) 6= ∅ and, for some j, βk
j is a proper subset of β(z∗), then any index î ∈ αk

j ∪ γk
j

satisfying (3.34) belongs to β(z∗) and hence we have

αk
0 ⊇ αk

1 ⊇ · · · ⊇ αk
j ⊇ αk

j+1 ⊇ α(z∗), (3.40)

βk
0 ⊆ βk

1 ⊆ · · · ⊆ βk
j ⊆ βk

j+1 ⊆ β(z∗), (3.41)

γk
0 ⊇ γk

1 ⊇ · · · ⊇ γk
j ⊇ γk

j+1 ⊇ γ(z∗). (3.42)

Proof: First of all, we note that

αk
0 ⊇ αk

1 ⊇ · · · ⊇ αk
j ⊇ αk

j+1,

βk
0 ⊆ βk

1 ⊆ · · · ⊆ βk
j ⊆ βk

j+1,

γk
0 ⊇ γk

1 ⊇ · · · ⊇ γk
j ⊇ γk

j+1

by (3.36)–(3.38). Next we show the existence of the integer k0. We only consider the case where
ρ = ρ2. We may deal with the other case similarly.

Since {zk} converges to z∗ ∈ F , we have from the continuity of the function ρ that

lim
k→∞

ρ(zk) = 0 (3.43)

and hence, for each i ∈ α(z∗) ∪ γ(z∗),

max
{

Gi(z
k), Hi(z

k)
}

> ρ(zk)
(

:= τ‖Φ0(z
k)‖σ

)

(3.44)

≥ 2 ‖Φ0(z
k)‖

≥ 2φ0(Gi(z
k), Hi(z

k))

= 2
(

Gi(z
k) + Hi(z

k)−
√

(Gi(zk))2 + (Hi(zk))2
)

=
4Gi(z

k)Hi(z
k)

Gi(zk) + Hi(zk) +
√

(Gi(zk))2 + (Hi(zk))2

≥ min
{

Gi(z
k), Hi(z

k)
}

(3.45)

when k is large enough, where the second inequality follows from the fact that {‖Φ0(z
k)‖} is

convergent to 0 and the constant σ lies in the interval (0, 1), and the last inequality follows from
(3.5) and the fact that

Gi(z
k) + Hi(z

k) +
√

(Gi(zk))2 + (Hi(zk))2 ≤ 2(Gi(z
k) + Hi(z

k))

≤ 4 max
{

Gi(z
k), Hi(z

k)
}

.

13

Thus, we have from (3.44)–(3.45) and the continuity of the functions G and H that, for any k
sufficiently large,

Gi(z
k) > ρ(zk), Hi(z

k) ≤ ρ(zk), i ∈ α(z∗), (3.46)

Gi(z
k) ≤ ρ(zk), Hi(z

k) > ρ(zk), i ∈ γ(z∗). (3.47)

Note that (3.29)–(3.31) imply

γk
0 ⊇

{

i | Gi(z
k) ≤ ρ(zk), Hi(z

k) > ρ(zk)
}

(3.48)

for each k. Moreover, it is obvious from (3.43) that βk
0 ⊆ β(z∗) when k is sufficiently large. It

then follows from (3.29)–(3.31) and (3.46)–(3.48) that there exists an integer k1 ≥ 0 such that,

for any k ≥ k1,

αk
0 ⊇ α(z∗), βk

0 ⊆ β(z∗), γk
0 ⊇ γ(z∗). (3.49)

If z∗ is nondegenerate, then (3.39) follows from (3.49) and the fact that both {αk
0, β

k
0 , γk

0} and
{α(z∗), β(z∗), γ(z∗)} are partitions of the set {1, · · · , m}. Therefore, (i) and (ii) hold for all

k ≥ k1.
Suppose β(z∗) 6= ∅. If β(z∗) = {1, · · · , m}, then we have βk

j+1 ⊆ β(z∗) for any k. Next we

suppose that β(z∗) is a proper subset of {1, · · · , m}. We will show that, when k is large enough,
if there is an î ∈ αk

j ∪ γk
j satisfying (3.34) and βk

j is a proper subset of β(z∗), then î ∈ β(z∗).

Note that

lim
k→∞

max
{

Gi(z
k), Hi(z

k)
}

= Gi(z
∗) + Hi(z

∗) > 0, i /∈ β(z∗), (3.50)

lim
k→∞

max
{

Gi(z
k), Hi(z

k)
}

= 0, i ∈ β(z∗). (3.51)

We have from (3.50) and (3.51) that there exists an integer k0 ≥ k1 such that, for any k ≥ k0,

max
i∈β(z∗)

{

max
{

Gi(z
k), Hi(z

k)
}

}

< min
i/∈β(z∗)

{

max
{

Gi(z
k), Hi(z

k)
}

}

. (3.52)

This inequality means that the index î satisfying (3.34) must be in β(z∗) as long as βk
j is a

proper subset of β(z∗), namely,

(

αk
j ∪ γk

j

)

∩ β(z∗) = β(z∗) \ βk
j 6= ∅.

By (3.37), we have βk
j+1 ⊆ β(z∗) and therefore, (3.40)–(3.42) hold for all k ≥ k0. Note that,

since k0 ≥ k1, (i) and (ii) also hold for all k ≥ k0. This completes the proof. 2

We proceed to analyzing convergence properties of Algorithm HIA in detail. First, we make

the following assumption:

A1: Even if the identical subproblem appears in Step 2 at infinitely many iterations and this
problem may have an infinite number of solutions, we always obtain the same solution, or

at most finitely many different solutions.

14

This assumption seems reasonable in practice, since an iterative method applied to solve a

subproblem will generate an identical sequence as long as the same starting point is chosen.
In Algorithm HIA, for each k, the parameter θk is expectantly used as a positive lower bound

of

min
i/∈β(z∗)

max
{

Gi(z
∗), Hi(z

∗)
}

= min
i/∈β(z∗)

(

Gi(z
∗) + Hi(z

∗)
)

> 0. (3.53)

In fact, a key technique for obtaining a finite termination property of Algorithm HIA is to choose
the index sets αk

j , β
k
j and γk

j so that

αk
j′
k

= α(z∗), βk
j′
k

= β(z∗), γk
j′
k

= γ(z∗) (3.54)

hold for some index j ′k ∈ {0, 1, · · · , jk} when k is large enough. In order to ensure this, the

number θk needs to be small enough to exclude all the indices in α(z∗) ∪ γ(z∗) from βk
j′
k

for all

k sufficiently large. Another requirement is that all the indices in β(z∗) remain in βk
j′
k

when k is

sufficiently large.

Since the index set {1, · · · , m} has a finite number of partitions, there are a finite number of
subproblems (3.32). By Assumption A1, the set

S :=
{

ẑk
j | 0 ≤ j ≤ jk, k = 0, 1, · · ·

}

(3.55)

is a finite set. Recall that ẑk
j ∈ F for any k and j. We consider the following two cases.

Case I:
⋃

ẑk
j
∈S

(

α(ẑk
j) ∪ γ(ẑk

j)
)

6= ∅. In this case, we have

min
ẑk
j
∈S

{

Gi(ẑ
k
j) + Hi(ẑ

k
j) | i ∈ α(ẑk

j) ∪ γ(ẑk
j)

}

> 0,

since S is a finite set. It then follows from (3.35) and the way of updating δk in Step 3 that the

parameter δk stays at a positive constant when k is sufficiently large. So, by the updating rule
of θk, there exists an integer k̄ > 0 such that

θk = θk̄ > 0, k ≥ k̄. (3.56)

Since

lim
k→∞

max
{

Gi(z
k), Hi(z

k)
}

= 0, ∀i ∈ β(z∗),

we have

max
{

Gi(z
k), Hi(z

k)
}

< θk̄, ∀i ∈ β(z∗) (3.57)

for all sufficiently large k. Moreover, by the definition of β(z∗), we have

max
i∈β(z∗)

{

max
{

Gi(z
k), Hi(z

k)
}

}

< min
i/∈β(z∗)

{

max
{

Gi(z
k), Hi(z

k)
}

}

(3.58)

for any k large enough. Taking into account (3.34), we deduce from (3.57) and (3.58) that the

indices in β(z∗) are inevitably included by some βk
j and, in Step 3, these indices must be chosen

earlier than the indices in α(z∗) ∪ γ(z∗). As a result, there is some j ∈ {0, 1, · · · , jk} such that

15

β(z∗) ⊆ βk
j whenever k is sufficiently large. This together with Theorem 3.6 means that, when

k is large sufficiently, there must be some index j ′k ∈ {0, 1, · · · , jk} satisfying (3.54), and then
problem (3.32) with j = j ′k is actually equivalent to problem (3.23). As long as a solution of

problem (3.32) with j = j ′k yields a B-stationary point of problem (P), Algorithm HIA may
terminate in a finite number of iterations. Of course, it may happen that the algorithm stops

by getting another B-stationary point of (P) before we identify the correct index sets.

Furthermore, we make the following assumption, which is most likely to hold when problem
(P) has finitely many B-stationary points:

A2: The limit point z∗ of {zk}, which is a sequence of stationary points of (Pεk
), is a B-stationary

point of problem (P) and it belongs to the set S given by (3.55).

Then, it follows from (3.35) and the updating rule of θk that the number θk̄ in (3.56) is actually

a positive lower bound of (3.53). Thus, our requirements are fulfilled: That is, in Step 3,
(a) all the indices in α(z∗) ∪ γ(z∗) are excluded from βk

jk
eventually;

(b) all the indices in β(z∗) remain in βk
jk

eventually.

Therefore, we are able to identify the correct index sets α(z∗), β(z∗), and γ(z∗) in a finite number
of iterations and furthermore, we may terminate the algorithm finitely by getting z∗. Note that

Algorithm HIA may stop prematurely by producing another B-stationary point of problem (P).

Case II: α(ẑk
j) ∪ γ(ẑk

j) = ∅, ∀ẑk
j ∈ S. In this case, we have from the updating rules of

δk and θk that δk remains to be +∞ and so

θk ≡ θ0, ∀k.

Since the strategy in Algorithm HIA is to add some indices to βk
j one after another, by Theorem

3.6, we have the same conclusion as in Case I: When k is sufficiently large, there exists some

index j ′k ∈ {0, 1, · · · , jk} satisfying (3.54). Furthermore, suppose that Assumption A2 holds. In
the present case, this means

β(z∗) = {1, 2, · · · , m}.

Recall that θk ≡ θ0 for all k. As a result, all indices should be chosen to be in βk
jk

eventually

when k becomes large enough, i.e., we also can identify the index sets α(z∗), β(z∗), and γ(z∗) in
a finite number of steps.

The preceding analysis together with Lemma 3.1 yields the following concluding result.

Theorem 3.7 Suppose that the sequence {zk} generated by Algorithm HIA converges to z∗ as
εk → 0 and the MPCC-LICQ holds at z∗. Then, under Assumption A1, we have that, for any

sufficiently large k,
(i) problem (Pεk

) satisfies the standard LICQ at zk;
(ii) there exists j ′k ∈ {0, 1, · · · , jk} such that αk

j′
k

, βk
j′
k

, and γk
j′
k

satisfy condition (3.54).

If furthermore, Assumption A2 also holds, then

αk
jk

= α(z∗), βk
jk

= β(z∗), γk
jk

= γ(z∗) (3.59)

hold for all k sufficiently large.

16

In consequence, without the assumption of asymptotically weak nondegeneracy, we have

attained the same target as Algorithm H, which is to identify the index sets α(z∗), β(z∗), and
γ(z∗) finitely. Thus, Algorithm HIA may terminate in a finite number of iterations by producing

a B-stationary point of problem (P).
On the other hand, if the sequence {zk} is asymptotically weakly nondegenerate, the sets

αk
0 , βk

0 , γk
0 given in Step 1 of Algorithm HIA are the same as the sets αk, βk, γk given in Step 1

of Algorithm H when k is large enough. Theorem 3.5(ii) immediately yields the following result.

Theorem 3.8 Suppose the sequence {zk} generated by Algorithm HIA converges to z∗ as εk →
0, the MPCC-LICQ holds at z∗, and {zk} is asymptotically weakly nondegenerate. Then the sets
αk

0 , βk
0 , and γk

0 satisfy (3.54) with j ′k = 0 when k is large enough.

The main strategy in Algorithm HIA is to add some indices, which are chosen from αk
j ∪ γk

j ,

to βk
j . Since αk

j ∪ γk
j contains β(z∗) for any k large enough, condition (3.54) holds for some

j ′k ∈ {0, 1, · · · , jk} when k is large enough. In order to ensure this, the inclusions in (3.49) are

necessary. In the above discussion, we suppose that τ > 0 and σ ∈ (0, 1), just as in Algorithm
H. Actually, from the proof of Theorem 3.6, (3.49) remains true for the case where τ ≥ 2 and

σ = 1 and furthermore, so do Theorems 3.6 and 3.7. Moreover, since the functions G and H
play a symmetric role in problem (P), we may exchange the definitions of αk

0 and γk
0 in Step 1

of Algorithm HIA, namely, let

γk
0 :=

{

i | Gi(z
k) ≤ ρ(zk), Hi(z

k) > ρ(zk)
}

,

αk
0 :=

{

1, · · · , m
}

\
(

βk
0 ∪ γk

0

)

instead of (3.31) and (3.29), respectively.

3.4 Modified hybrid method with index subtraction strategy

In this subsection, we consider another hybrid algorithm that adopts an index subtraction strat-
egy. One advantage of this algorithm is that the function ρ employed in the last subsection can

be replaced by a sequence of positive numbers.

Algorithm HIS:

Step 0: Choose η > 0, θ0 > 0, ξ0 > 0, and ε0 > 0. Set k := 0.

Step 1: Solve problem (Pεk
) and let zk denote one of its stationary points. Set

αk
0 :=

{

i | Gi(z
k) > η, Hi(z

k) ≤ ξk

}

, (3.60)

γk
0 :=

{

i | Gi(z
k) ≤ ξk, Hi(z

k) > η
}

\ αk
0, (3.61)

βk
0 :=

{

1, · · · , m
}

\
(

αk
0 ∪ γk

0

)

, (3.62)

δk
0 := +∞,

and j := 0. Go to Step 2.

Step 2: If problem (3.32) is solvable, let ẑk
j denote one of its stationary points and go to Step

3. Otherwise, go to Step 4.

17

Step 3: If, in (3.32), the Lagrange multipliers corresponding to the constraints (3.33) are all
nonnegative, then terminate. Else, if there is an î ∈ βk

j such that

max
i∈βk

j

{

max
{

Gi(z
k), Hi(z

k)
}

}

= max
{

Gî(z
k), Hî(z

k)
}

> θk, (3.63)

then set

δk
j+1 := min

{

δk
j ,

1

2
min

{

Gi(ẑ
k
j) + Hi(ẑ

k
j) | i ∈ α(ẑk

j) ∪ γ(ẑk
j)

}

}

(3.64)

and

αk
j+1 :=

{

αk
j ∪ {̂i}, if Gî(z

k) ≥ Hî(z
k)

αk
j , otherwise,

βk
j+1 := βk

j \ {̂i},

γk
j+1 :=

{

γk
j , if Gî(z

k) ≥ Hî(z
k)

γk
j ∪ {̂i}, otherwise,

j := j + 1

and go to Step 2. Otherwise, let jk := j and δk := δk
j and go to Step 4.

Step 4: Choose εk+1 ∈ (0, εk), ξk+1 ∈ (0, ξk], and set θk+1 := min
{

θk, δk

}

. Let k := k + 1 and

go to Step 1.

Note that, since Gi(z
k) → 0 for each i ∈ β(z∗) ∪ γ(z∗), the index set αk

0 determined in Step
1 will eventually consist of indices in α(z∗) only. Similarly, γk

0 will eventually consist of indices

in γ(z∗) only. Therefore, we must have

αk
0 ⊆ α(z∗), βk

0 ⊇ β(z∗), γk
0 ⊆ γ(z∗) (3.65)

for all k sufficiently large. This is the key requirement for Algorithm HIS, which subtracts some
indices from βk

j so that condition (3.54) holds for some j ′k ∈ {0, 1, · · · , jk} when k is large enough.

In Algorithm HIS, the strict positivity of η is essential, and the sequence {ξk} plays only a
subsidiary role: The sets αk

0 and γk
0 should be chosen not too large so that the key condition

(3.65) holds as early as possible. To this end, we may choose {ξk} to be a null sequence. On
the other hand, from the computational viewpoint, it is desirable that the set βk

0 is as small as
possible, i.e., the sets αk

0 and γk
0 are as large as possible. In consequence, it would be important

to choose the constant η > 0 and the sequence {ξk} appropriately.
Another practical choice is simply to remove {ξk} from Algorithm HIS. For example, we may

define

αk
0 :=

{

i | Gi(z
k) > η

}

,

γk
0 :=

{

i | Hi(z
k) > η

}

\ αk
0 ,

βk
0 :=

{

1, · · · , m
}

\
(

αk
0 ∪ γk

0

)

instead of (3.60)–(3.62), or preferably, let

αk
0 :=

{

i | Gi(z
k) > η, Hi(z

k) ≤ η
}

,

γk
0 :=

{

i | Gi(z
k) ≤ η, Hi(z

k) > η
}

,

βk
0 :=

{

1, · · · , m
}

\
(

αk
0 ∪ γk

0

)

,

18

which is equivalent to letting ξk ≡ η (∀k) in (3.60)–(3.62).
Moreover, the parameter θk is also expected to be a positive lower bound of (3.53) so that

the indices outside β(z∗) can be removed from βk
jk

eventually in Step 3. As analyzed in the last
subsection, Assumptions A1 and A2 guarantee that the parameter θk satisfies this requirement,

i.e., θk can serve as a positive lower bound of (3.53) when k is large enough.
In a similar way to the last subsection, comprehensive and detailed analysis can be given for

Algorithm HIS. In particular, under Assumption A1, θk stays at a positive constant when k is
sufficiently large in both Cases I and II considered in the last subsection. It then follows from

(3.63) that all the indices in β(z∗) cannot be selected in Step 3 for all k large enough, i.e., they
remain in βk

jk
eventually. Thus, we have the following result.

Theorem 3.9 Suppose that the sequence {zk} generated by Algorithm HIS converges to z∗ as

εk → 0 and Assumption A1 holds. Then, for any sufficiently large k, we have

αk
0 ⊆ αk

1 ⊆ · · · ⊆ αk
jk

⊆ α(z∗),

βk
0 ⊇ βk

1 ⊇ · · · ⊇ βk
jk

⊇ β(z∗),

γk
0 ⊆ γk

1 ⊆ · · · ⊆ γk
jk

⊆ γ(z∗).

If furthermore, Assumption A2 holds, then we have (3.59) for all k sufficiently large.

This theorem indicates that, under similar assumptions to the previous subsection, Algorithm

HIS also has a finite termination property.

4 Further Discussions

First of all, let us make a remark on Assumption A2 employed by Algorithms HIA and HIS.
Recall that, throughout Section 3, the sequence {zk} was assumed to be convergent to z∗.
Actually, the sequence {zk} may have multiple limit points in general. In this case, it is easy to

see that, as long as one of the limit points satisfies the assumptions made for z∗ in Algorithms
HIA and HIS, we may obtain similar conclusions. Thus, Assumption A2 can be restated as

follows:

A2 ′ : The set S given in (3.55) contains an accumulation point of the sequence {zk} that is a

B-stationary point of problem (P).

This indicates that our assumptions for Algorithms HIA and HIS are really not very restrictive.

4.1 Stopping criteria

The stopping criterion in Step 3 of Algorithms H, HIA, and HIS is used to check the B-

stationarity of the point ẑk, which is based on the fact that, for given (αk, βk, γk), if ẑk is
a stationary point of problem (3.6) with nonnegative Lagrange multipliers related to the con-
straints (3.7) and the MPCC-LICQ holds at ẑk, then ẑk is a B-stationary point of problem (P)

[11]. Alternatively, we may use some other conditions to check M-stationarity or C-stationarity
in view of the fact that, if the MPCC-LICQ holds at ẑk and the Lagrange multipliers λk

G,i

and λk
H,i corresponding to (3.7) satisfy some conditions like (2.7) or (2.8), then ẑk is C- or M-

stationary to problem (P). Hence, the algorithms may terminate finitely by producing a C- or
M-stationary point of problem (P) under some weaker conditions.

19

4.2 Comparison of the algorithms

Comparing with Algorithm H, Algorithms HIA and HIS may need to solve more subproblems

(3.32). On the other hand, Algorithm H may have to solve more subproblems (Pε) than the other
two algorithms in general. From both theoretical and computational points of view, problem

(3.32) is easier to deal with than problem (Pε). For example, under the condition that the
functions G, H, h are all affine and each gi is convex, the feasible region of problem (3.32) is
convex, but that of problem (Pε) is not convex.

4.3 Extensions

In Section 3, we have presented Algorithms H, HIA and HIS by applying an active set identi-
fication technique to the smoothing continuation method. Actually, the proposed approaches

may be extended by using other subproblems instead of (Pε) in Step 1 of the algorithms.
(I) Since problem (Pε) is equivalent to

min f(z)

s.t. g(z) ≤ 0, h(z) = 0 (4.1)

G(z) + H(z) ≥ 0

Gi(z)Hi(z) = ε2, i = 1, · · · , m,

we may use problem (4.1) instead of (Pε) in Step 1 of the algorithms at each iteration. It is

obvious that all analysis and conclusions remain valid. Note that, for any ε > 0, the constraints

Gi(z) + Hi(z) ≥ 0, i = 1, · · · , m

are always inactive and so problem (4.1) seems simpler than (Pε).
(II) The regularization scheme

min f(z)

s.t. g(z) ≤ 0, h(z) = 0 (4.2)

G(z) ≥ 0, H(z) ≥ 0

Gi(z)Hi(z) ≤ ε, i = 1, · · · , m

and the penalty scheme

min f(z) + ε−1G(z)TH(z)

s.t. g(z) ≤ 0, h(z) = 0 (4.3)

G(z) ≥ 0, H(z) ≥ 0,

where ε is a positive parameter, have been proposed as approximate problems of (P) in [22] and

[12], respectively. These two methods share similar properties to the smoothing continuation
method. We may replace (Pε) by (4.2) or (4.3) in Step 1 of the algorithms at each iteration and

we can obtain similar results.

20

5 Computational Results

We have tested the proposed algorithms on various instances of MPCCs. In our experiments,
we employed the MATLAB 6.0 built-in solver function fmincon to solve the subproblems at each

iteration. The computational results indicate that the proposed approach can find an optimal
solution of an MPCC in a small number of iterations. We report the details below.

Table 1: Computational results for Problems 5.1–5.3
Smoothing Con- ε2 = 10−6 (0.5000,0.5000,0.5000,0.5000,-0.0000,-0.0000)
tinuation Method Ite 27

Problem 5.1a ε0 = 10−2 (0.5000,0.5000,0.5000,0.5000,0,0)
Algorithm H β(ẑ) {1, 2}

Ite 15

Smoothing Con- ε3 = 10−8 (5.0000,4.0000,2.0000,0.0000,0.0000)
tinuation Method Ite 117

Problem 5.2b ε0 = 10−2 (5.0000,4.0000,2.0000,0.0000,-0.0000)
Algorithm H β(ẑ) ∅

Ite 30

Smoothing Con- ε2 = 10−6 (25.0000,30.0000,5.0000,10.0000,0.0000)
tinuation Method Ite 57

Problem 5.3c ε0 = 10−2 (25.0000,30.0000,5.0000,10.0000,0.0000)
Algorithm H β(ẑ) {6}

Ite 22

a z∗ = (0.5, 0.5, 0.5, 0.5, 0, 0), β(z∗) = {1, 2}, z0 = (1, 1, · · · , 1);
b z∗ = (5, 4, 2, 0, 0, 0, 0, 1), β(z∗) = {2, 3}, z0 = (0.5, · · · , 0.5);
c z∗ = (25, 30, 5, 10, 0, 0, 0, 0, 0, 0), β(z∗) = {6}, z0 = (10, · · · , 10).

Table 2: Problems 5.4–5.7 generated by QPECgen
Parameters Input Data

in QPECgena Problem 5.4 Problem 5.5 Problem 5.6 Problem 5.7

(n, m) (8, 5) (6, 10) (10, 10) (6, 12)

(l, p) (4, 5) (4, 10) (5, 10) (4, 12)

second deg 2 6 5 6

first deg 2 2 3 2

mix deg 2 2 3 4

implicit 1 1 0 1

a The values of other parameters are common to all problems: qpec type=300, cond P=100,
scale P=100, convex f=1, symm M=1, mono M=1, cond M=200, scale M=200, tol deg=1.0e-6,
rand seed=0, output=3.

5.1 Computational results for Algorithm H

In our testing, we set ε0 = 10−2 and updated this parameter by εk+1 = 10−2εk. The point zk is
used as the starting point for the next step. We employed

ρ1(z) = ||min(G(z), H(z))|| 12

and

ρ2(z) = ||Φ0(z)|| 1

2

21

Table 3: Some data obtained by QPECgen for Problems 5.4–5.7
x∗ (0.0723, 0.4345, 0.2387, -0.4003,

Probelm 5.4 -0.2870, -0.5857, -0.4421, 0.2286)
y∗ (0, 0, 0, 0, 0)

β(x∗, y∗) {1, 2}
x∗ (0.0872, 0.2576, -0.1181, 0.2958, -0.1939, -0.0858)

Problem 5.5 y∗ (0, 0, 0, 0, 0, 0, 0, 0.7559, 0.6660, 0.0115)
β(x∗, y∗) {1, 2, 3, 4, 5, 6}

x∗ (0.6369, 0.6371, 0.1739, -0.7158, -0.8703,
Problem 5.6 -0.7478, -0.4383, 0.1886, 0.0741, 0.1494)

y∗ (0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
β(x∗, y∗) {1, 2, 3, 4, 5}

x∗ (-0.1018, 0.0166, -0.3092, 0.1948, -0.4273, 0.0296)
Problem 5.7 y∗ (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.8546, 0.3146)

β(x∗, y∗) {1, 2, 3, 4, 5, 6}

Table 4: Computational results for Problems 5.4–5.7 a

Smoothing Con- ε1 = 10−4 (0.0724,0.4345,0.2386,-0.4003,-0.2870)
tinuation Method Ite 43

Problem 5.4 ε0 = 10−2 (0.0723,0.4345,0.2386,-0.4003,-0.2870)
Algorithm H β(x̂, ŷ) {1, 2}

Ite 32

Smoothing Con- ε2 = 10−6 (0.0872,0.2576,-0.1181,0.2958,-0.1940)
tinuation Method Ite 103

Problem 5.5 ε1 = 10−4 (0.0871,0.2577,-0.1181,0.2957,-0.1940)
Algorithm H β(x̂, ŷ) {1, 2, 3, 4, 5, 6}

Ite 59

Smoothing Con- ε3 = 10−8 (0.6370,0.6366,0.1738,-0.7158,-0.8703)
tinuation Method Ite 185

Problem 5.6 ε1 = 10−4 (0.6368,0.6371,0.1739,-0.7158,-0.8704)
Algorithm H β(x̂, ŷ) {1, 2, 3, 4, 5}

Ite 132

Smoothing Con- ε3 = 10−8 (-0.1002,0.0159,-0.3091,0.1947,-0.4276)
tinuation Method Ite 104

Problem 5.7 ε1 = 10−4 (-0.1018,0.0167,-0.3091,0.1947,-0.4275)
Algorithm H β(x̂, ŷ) {1, 2, 3, 4, 5, 6}

Ite 41

aInitial points are (0.5, 0.5, · · · , 0.5) for Problems 5.4, 5.5 and 5.7, and (2, 2, · · · , 2) for Problem 5.6.

as the identification function ρ in Step 1 of Algorithm H, and we found that the two functions

yielded almost the same numerical results for all examples solved. This is not surprising because
{ρ1(z

k)} and {ρ2(z
k)} tend to 0 in the same order as zk → z∗.

First, we report on numerical results for problems from an AMPL collection of MPECs
called MacMPEC [15]. We notice that, since most problems are small-scale and, especially, the

cardinalities of the lower-level degenerate index sets at the solutions are quite low, the proposed
approach always solved the problems in only one iteration. Here, we only show the results for

three problems, say Problems 5.1, 5.2, and 5.3, which are coded as desilva.mod, ex.9.1.1.mod,
and bilevel1.mod, respectively, in MacMPEC. The computational results with the identification

function ρ1 are reported in Table 1, where ẑ denotes the points obtained by Algorithm H, z∗

and z0 indicate the solution of the problem and the initial point employed in the testing. In

addition, β(z∗) denotes the lower-level degenerate index set estimated at the point z∗ and Ite

stands for the number of total iterations spent by the solver fmincon. Recall that the objective
of the hybrid approach is to identify the set β(z∗).

22

Note that, in Table 1, we only list the values of the first five components of the variables

because that would be sufficient to illustrate the behavior of the tested algorithms. Table 1 shows
that Algorithm H was able to find the solutions of Problems 5.1, 5.2, and 5.3 very quickly. This,

as we mentioned above, may be due to the small scale of the problems and the low cardinality
of the lower-level degenerate index sets at the solutions.

Next we report on numerical results for somewhat larger test problems generated by QPEC-

gen of Jiang and Ralph [14]. The QPECgen generator is a MATLAB program that uses a set of
parameters, see [14] for detail. Once these parameters are specified, the program can randomly
generate a quadratic program with linear complementarity constraints

min
1

2
(xT , yT)P

(

x

y

)

+ cT x + dTy

s.t. A

(

x
y

)

+ a ≤ 0,

y ≥ 0, Nx + My + q ≥ 0,

yT (Nx + My + q) = 0,

where P, A, N, M are constant matrices and c, d, a, q are constant vectors with appropriate di-

mensions. QPECgen also outputs an approximate solution of a generated problem.
We set the QPECgen parameters as in Table 2 to generate Problems 5.4–5.7. In particu-

lar, the parameters n and m denote the dimensions of the variables x and y, respectively, and
second deg stands for the cardinality of the lower-level degenerate index set at a solution.

Some data obtained by the QPECgen generator are summarized in Table 3, in which (x∗, y∗)

denotes the solution given by QPECgen and β(x∗, y∗) stands for the lower-level degenerate index
set at (x∗, y∗), i.e., β(x∗, y∗) := {i | (Nx∗+My∗+q)i = 0 = y∗i }. The computational results with

the identification function ρ1 for Problems 5.4–5.7 are reported in Table 4, where the values of
the first five components of the variables are displayed for each of the obtained solutions.

The results shown in the tables reveal that it was not difficult to identify the active sets
by Algorithm H, at least for the test problems used in our numerical experiments, although we

have observed that the penalty method may not be very stable when the parameter ε becomes
small. In fact, we got the correct active sets in no more than three steps in all cases and, since

the computed points satisfy the B-stationarity conditions, Algorithm H terminated. Especially,
as mentioned in the last section, Algorithm H may terminate by finding a solution before the
correct index sets are obtained, see Table 1. Moreover, we notice that, since the number of

active indices is larger than the dimension of z, Problems 5.2, 5.5, and 5.7 do not satisfy the
MPCC-LICQ at the solutions. Nevertheless, we were able to obtain the solutions successfully,

which shows the robustness of the proposed approach.

Table 5: Parameters in QPECgen for Problems 5.8–5.9
Problem qpec type (n, m) (l, p) cond P scale P convex f symm M mono M cond M

5.8 300 (10, 10) (5, 10) 100 100 1 1 1 200
5.9 300 (8, 14) (4, 14) 100 100 1 1 1 200

Problem scale M second deg first deg mix deg tol deg implicit rand seed output

5.8 200 4 3 3 1.0e-6 0 0 3
5.9 200 4 2 1 1.0e-6 0 0 3

23

Table 6: Some data obtained by QPECgen for Problems 5.8–5.9
Problem x∗ y∗ β(x∗, y∗)

5.8 (0.6369, 0.6371, 0.1739, -0.7158, -0.8703, (0, 0, · · ·, 0) {1, 2, 3, 4}
-0.7478, -0.4383, 0.1886, 0.0741, 0.1494)

5.9 (-0.7330, -0.2090, -0.4140, 0.0168, (0,· · ·,0,0.4681,0.4739,0.2088) {1, 2, 3, 4}
-0.7084, -0.1104, 0.0030, -0.4658)

Table 7: Computational results for Problem 5.8 a

εk degenerate set distance Ite

10−2 βk = ∅ 0.0007 25+10

Algorithm H 10−3 βk = ∅ 0.0010 29+10

10−4 βk = {4} 0.0005 23+11

βk
0 = ∅ 0.0007 25+10

βk
1 = {4} 0.0007 10

Algorithm HIA 10−2 βk
2 = {2, 4} 0.0005 11

βk
3 = {1, 2, 4} 0.0004 10

βk
4 = {1, 2, 3, 4} 0.0004 10

βk
0 = {1, 2, 3, 4, 7, 9, 10} 1.5944 25+6

Algorithm HIS 10−2 βk
1 = {1, 2, 3, 4, 9, 10} 1.2922 5

βk
2 = {1, 2, 3, 4, 10} 0.4131 9

βk
3 = {1, 2, 3, 4} 0.0004 10

aWe used (1, 1, · · · , 1) as the initial point for all methods and we set θ0 = 0.2 in Algorithms
HIA and HIS. In addition, the parameter η in Algorithm HIS is set to be 0.5.

5.2 Computational results for Algorithms HIA and HIS

In this subsection, we examine the effectiveness of Algorithms HIA and HIS on some examples

of MPCC. Since the numerical results shown in the last subsection have revealed that Algorithm
H is comparable to the smoothing continuation method [10], we only compare Algorithms HIA

and HIS with Algorithm H. 1

We show the QPECgen parameters used to generate Problems 5.8 and 5.9 in Table 5, and

summarize some data output by the QPECgen generator in Table 6. In our experiments, we set
ε0 = 10−2 and updated this parameter by εk+1 = 10−1εk. Moreover, we employ

ρ(x, y) = ‖min(Nx + My + q, y)‖ 4

5

as the identification function in Step 1 of both Algorithm H and Algorithm HIA. In Algorithm

HIS, we use the sequence {ξk} given by

ξk = ρ(xk, yk), k = 0, 1, · · · ,

which is a reasonable choice to compare with the other two methods. See the tables for the
setting of the other parameters involved.

The computational results for Problem 5.8 and 5.9 are reported in Tables 7 and 8, respec-
tively. In the tables, distance denotes the distance between the obtained point and the solution

(x∗, y∗) measured by the infinity norm. In the Ite column, a sum ν1 + ν2 means that ν1 is the
number of iterations spent by fmincon for solving problem (Pε) and ν2 denotes the number of

iterations spent by solving subproblem (3.32), whereas a single number ν stands for the number
of iterations spent by solving subproblem (3.32) (as there is no need to solve problem (Pε) in
these cases).

1We have also confirmed through numerical experiments, the details of which are not included in this paper,
that Algorithm H is also comparable to other existing methods such as the penalty function method [12] and the
regularization method [22].

24

Table 8: Computational results for Problem 5.9 a

εk degenerate set distance Ite

10−2 βk = ∅ 0.0003 27+6

Algorithm H 10−3 βk = {1, 2, 3} 0.0004 19+5

10−4 βk = {1, 2, 3, 4} 0.0003 35+7

βk
0 = ∅ 0.0003 27+6

βk
1 = {2} 0.0003 6

Algorithm HIA 10−2 βk
2 = {1, 2} 0.0009 3

βk
3 = {1, 2, 3} 0.0009 3

βk
4 = {1, 2, 3, 4} 0.0009 3

βk
0 = {1, 2, 3, 4, 11} 0.8554 27+6

Algorithm HIS 10−2 βk
1 = {1, 2, 3, 4} 0.0009 3

aWe employed (1, 1, · · · ,1) as the initial point for all methods. We set θ0 = 0.2 in Algorithms
HIA and HIS and, η = 0.2 in Algorithm HIS.

The results shown in the tables reveal that both Algorithms HIA and HIS were able to
identify the active sets successfully. As mentioned in the previous section, Algorithms HIA and

HIS need to solve more problems of the form (3.32) than Algorithm H, whereas the latter has to
solve more problems of the form (Pε). Our experiments show that problem (3.32) can be solved
in fewer iterations than problem (Pε) generally.

6 Conclusions

By incorporating an active set identification technique with the smoothing continuation method,

we have presented three hybrid algorithms for MPCC. Unlike most of the existing methods, the
proposed algorithms possess a finite termination property, that is, we may compute a point with
some kind of stationarity to problem (P) by solving a finite number of nonlinear programs. In

consequence, the proposed approach is appealing for solving MPCC.
In particular, Algorithms H and HIA are based on an identification function satisfying (3.9)–

(3.11). Appropriate identification functions may improve efficiency of the two algorithms. Under
the assumption of the asymptotically weak nondegeneracy of the sequence {zk} generated in Step

1 of the algorithms, we have given two identification functions in Theorems 3.3 and 3.4. It is
still an open question to find a new identification function that works under weaker conditions.

Acknowledgement. The authors are grateful to Professor Paul Tseng for his helpful sugges-

tions on an earlier version of the paper.

References

[1] J.V. Burke, On the identification of active constraints II: The nonconvex case, SIAM
Journal on Numerical Analysis, 27 (1990), 1081–1102.

[2] J.V. Burke and J.J. Moré, On the identification of active constraints, SIAM Journal
on Numerical Analysis, 25 (1988), 1197–1211.

[3] X. Chen and M. Fukushima, A smoothing method for a mathematical program with P-
matrix linear complementarity constraints, Computational Optimization and Applications,
27 (2004), 223–246.

25

[4] Y. Chen and M. Florian, The nonlinear bilevel programming problem: Formulations,
regularity and optimality conditions, Optimization, 32 (1995), 193–209.

[5] F. Facchinei, A. Fischer, and C. Kanzow, On the accurate identification of active
constraints, SIAM Journal on Optimization, 9 (1998), 14–32.

[6] F. Facchinei, A. Fischer, and C. Kanzow, On the identification of zero variables in
an interior-point framework, SIAM Journal on Optimization, 10 (2000), 1058–1078.

[7] F. Facchinei, H. Jiang, and L. Qi, A smoothing method for mathematical programs with
equilibrium constraints, Mathematical Programming, 85 (1999), 107–134.

[8] C.A. Floudas, P.M. Pardalos, C.S. Adjiman, W.R. Esposito, Z.H. Gümüs, S.T.

Harding, J.L. Klepeis, C.A. Meyer and C.A. Schweiger, Handbook of Test Prob-
lems in Local and Global Optimization, Kluwer Academic Publishers, Dordrecht, 1999.

[9] M. Fukushima, Z.Q. Luo, and J.S. Pang, A globally convergent sequential quadratic
programming algorithm for mathematical programs with linear complementarity constraints,
Computational Optimization and Applications, 10 (1998), 5–34.

[10] M. Fukushima and J.S. Pang, Convergence of a smoothing continuation method for
mathematical problems with complementarity constraints, Ill-posed Variational Problems
and Regularization Techniques, Lecture Notes in Economics and Mathematical Systems,
Vol. 477, M. Théra and R. Tichatschke (eds.), Springer-Verlag, Berlin/Heidelberg, 1999,
105–116.

[11] M. Fukushima and P. Tseng, An implementable active-set algorithm for computing a
B-stationary point of the mathematical program with linear complementarity constraints,
SIAM Journal on Optimization, 12 (2002), 724-739.

[12] X. Hu and D. Ralph, Convergence of a penalty method for mathematical programming
with equilibrium constraints, Journal of Optimization Theory and Applications, to appear.

[13] X.X. Huang, X.Q. Yang, and D.L. Zhu, A sequential smooth penalization approach
to mathematical programs with complementarity constraints, manuscript, Department of
Applied Mathematics, Hong Kong Polytechnic University, Hong Kong, 2001.

[14] H. Jiang and D. Ralph, QPECgen, a MATLAB generator for mathematical programs
with quadratic objectives and affine variational inequality constraints, Computational Op-
timization and Applications, 13 (1999), 25–59.

[15] S. Leyffer, MacMPEC: AMPL collection of MPECs, Technical Report,
http://www-unix.mcs.anl.gov/~leyffer/MacMPEC/, 2000.

[16] H. Jiang and D. Ralph, Smooth SQP methods for mathematical programs with nonlinear
complementarity constraints, SIAM Journal on Optimization, 10 (2000), 779–808.

[17] G.H. Lin and M. Fukushima, A modified relaxation scheme for mathematical programs
with complementarity constraints, Annals of Operations Research, to appear.

[18] G.H. Lin and M. Fukushima, A new relaxation method for mathematical programs with
complementarity constraints, Journal of Optimization Theory and Applications, 118 (2003),
81–116.

26

[19] G.H. Lin and M. Fukushima, Some exact penalty results for nonlinear programs and their
applications to mathematical programs with equilibrium constraints, Journal of Optimization
Theory and Applications, 118 (2003), 67–80.

[20] Z.Q. Luo, J.S. Pang, and D. Ralph, Mathematical Programs with Equilibrium Con-
straints, Cambridge University Press, Cambridge, United Kingdom, 1996.

[21] H. Scheel and S. Scholtes, Mathematical programs with complementarity constraints:
Stationarity, optimality, and sensitivity, Mathematics of Operations Research, 25 (2000),
1–22.

[22] S. Scholtes, Convergence properties of a regularization scheme for mathematical programs
with complementarity constraints, SIAM Journal on Optimization, 11 (2001), 918–936.

[23] S. Scholtes and M. Stöhr, How stringent is the linear independence assumption for
mathematical programs with complementarity constraints, Mathematics of Operations Re-
search, 26 (2001), 851–863.

[24] P. Tseng, Growth behavior of a class of merit functions for the nonlinear complementarity
problem, Journal of Optimization Theory and Applications, 89 (1996), 17–37.

[25] N. Yamashita, H. Dan, and M. Fukushima, On the identification of degenerate indices
in the nonlinear complementarity problem with the proximal point algorithm, Mathematical
Programming, 99 (2004), 377–397.

27

