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Abstract. In [3], an ε-active set algorithm was proposed for solving a mathematical program
with a smooth objective function and linear inequality/complementarity constraints. It is asserted
therein that, under a uniform LICQ on the ε-feasible set, this algorithm generates iterates whose
cluster points are B-stationary points of the problem. However, the proof has a gap and only shows
that each cluster point is an M-stationary point. We discuss this gap and show that B-stationarity
can be achieved if the algorithm is modified and an additional error bound condition holds.
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1. Introduction. In a recent paper by the authors [3], an ε-active set algo-
rithm was proposed for solving the following mathematical program with equilibrium
constraints (MPEC):

minimize f(z)

subject to Gi(z) ≥ 0, i = 1, . . . , m,

Hi(z) ≥ 0, i = 1, . . . , m,

Gi(z)Hi(z) = 0, i = 1, . . . , m,

gj(z) ≤ 0, j = 1, . . . , p,

hl(z) = 0, l = 1, . . . , q,

(1)

where f is a real-valued continuously differentiable function on <n and Gi,Hi, gj , hl

are real-valued affine functions on <n. In Theorem 4.1(a) of [3], it is asserted that
every cluster point of iterates generated by the algorithm is a B-stationary point of
(1). However, the proof has a gap and only shows that every cluster point is an
M-stationary point. We will discuss this gap and a modified algorithm that achieves
B-stationarity under an additional error bound condition.

The gap occurs on [3, page 734] in the line “If νk → 0, then |K′| = ∞, δk → 0, and
the updating formula for εk would imply εk → 0, so any cluster point z̄ of {ẑk}k∈K′
would be a KKT point of the relaxed problem R(z̄), which is a B-stationary point of
MPEC (1) under the uniform LICQ.” In particular, we have for all k ∈ K′ that

vk
i ≥ −νk and wk

i ≥ −νk ∀ i ∈ Âk ∩ B̂k,(2)
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where Âk, B̂k are given by [3, Eq. (7)] and vk
i , wk

i are multipliers associated with ẑk

(see [3, Eqs. (5), (6)]).1 Thus, if a subsequence {ẑk}k∈K′′ (K′′ ⊆ K′) converges to
some z̄, then by further passing to a subsequence if necessary, we can assume that
the index sets Âk and B̂k are constant (i.e., Âk = Ā, B̂k = B̄ for some Ā, B̄) for all
k ∈ K′′. Since z̄ satisfies the uniform LICQ, {(vk

i )i∈Ā, (wk
i )i∈B̄}k∈K′′ also converges

to some (v̄i)i∈Ā, (w̄i)i∈B̄ .2 By (2),

v̄i ≥ 0 and w̄i ≥ 0 ∀ i ∈ Ā ∩ B̄.

This together with [3, Eqs. (5), (6)] implies that z̄ is an M-stationary point (see [4, 5]
and (5)). If in addition

Ā ∩ B̄ = A0(z̄) ∩B0(z̄),(3)

then z̄ is a B-stationary point of (1). In general, however, we can only assert that
Ā ∩ B̄ ⊆ A0(z̄) ∩B0(z̄). This is the gap.

2. A modified ε-active set algorithm. We now describe a way, based on an
active set identification approach of Facchinei, Fischer, and Kanzow [1], to modify the
ε-active set algorithm so that (3) holds under an additional error bound condition.
To simplify the notation, we will consider only the complementarity constraints, i.e.,
we assume p = q = 0 in (1). The general case can be treated analogously. The
Lagrangian associated with (1) is

L(z, v, w) := f(z) +
m∑

i=1

(Gi(z)vi + Hi(z)wi).

We assume that there exists a computable continuous function R : <n × <m ×
<m → [0,∞) providing a local Hölder error bound at each M-stationary point z̄ that
is not B-stationary, i.e., there exist scalars τ > 0, γ > 0, and δ > 0 (depending on z̄)
such that

‖(z, v, w)− (z̄, v̄, w̄)‖ ≤ τR(z, v, w)γ whenever ‖(z, v, w)− (z̄, v̄, w̄)‖ ≤ δ,(4)

where the multiplier vectors v̄, w̄ satisfy

∇zL(z̄, v̄, w̄) = 0,

{
v̄i ⊥ Gi(z̄) ≥ 0
w̄i ⊥ Hi(z̄) ≥ 0

}
, Gi(z̄)Hi(z̄) = 0,

{
v̄iw̄i ≥ 0,

v̄i ≥ 0 or w̄i ≥ 0

}
∀i.

(5)
Here, a ⊥ b means ab = 0. Due to uniform LICQ, v̄, w̄ are uniquely determined by z̄.
In fact, (5) characterizes M-stationarity for any z̄ ∈ <n. We also assume that

R(z̄, v̄, w̄) = 0 ⇐⇒ (z̄, v̄, w̄) satisfies (5).(6)

The “residual” function R(z, v, w) can be constructed analogous to the NLP and
NCP cases [1, 2]. In particular, consider

R(z, v, w) := ‖∇zL(z, v, w)‖+
m∑

i=1

(
|min{Gi(z), |vi|}|+ |min{Hi(z), |wi|}|

+ |Gi(z)Hi(z)|+ |min{0, viwi}|+ |min{0, vi}min{0, wi}|
)
.

(7)

1Throughout, we use the same notations as [3].
2This follows from [3, Eq. (6)], ‖rk‖1 ≤ δk → 0 (see [3, Eq. (5)]), and the fact that if bk = Ckuk

for all k and bk → b ∈ <q , Ck → C ∈ <q×p with C having linearly independent columns, then
uk → u ∈ <p with u being the unique solution of b = Cu.
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Then, R is continuous and satisfies (6). Arguing as in the proof of Cor. 6.6.4 in [2], we
have that the local error bound (4) holds if the M-stationary point z̄ is isolated and
f and ∇f are continuous and subanalytic (G and H, by being affine, are automati-
cally continuous and subanalytic). A referee suggests that the assumption of z̄ being
isolated is benign when G and H are affine. In particular, it is readily shown that the
M-stationary points of (1) are isolated if f is strictly convex on the null space of the
active constraint gradients. Alternatively, it can be shown that the local error bound
(4) holds with γ = 1 if a certain 2nd-order sufficient condition holds at z̄. This is a
topic for further research.

Let θ : (0,∞) → (0,∞) be any continuous nondecreasing function satisfying
limt↓0 t/θ(tγ) = 0 for any γ > 0. An example is θ(t) = −C/ log(min{t, 0.9}) with
C > 0. Using (4), (6) and following [1, 2], the function

Θ(z, v, w) := θ(R(z, v, w))

has the active set identification property that, for any M-stationary point z̄ that is
not B-stationary and corresponding multiplier vectors v̄, w̄, we have

lim
(z,v,w)→(z̄,v̄,w̄)

Gi(z)
Θ(z, v, w)

=
{

0 if Gi(z̄) = 0,
∞ if Gi(z̄) > 0,

and similarly with “Gi” replaced by “Hi”.
Let us define

Āk :=
{

i ∈ {1, ...,m} :
Gi(ẑk)

Θ(ẑk, vk, wk)
≤ 1

}
,

B̄k :=
{

i ∈ {1, ...,m} :
Hi(ẑk)

Θ(ẑk, vk, wk)
≤ 1

}
,

where the ith component of vk is vk
i if i ∈ Âk and is zero otherwise (and wk is

defined analogously). Since (ẑk, vk, wk) satisfies [3, Eqs. (4)-(6)], if (2) holds, then
R(ẑk, vk, wk) would tend to zero as ẑk → z̄ and εk, δk, νk tend to zero and, for ẑk

sufficiently near z̄, we would have (vk, wk) sufficiently near (v̄, w̄) (due to [3, A2]) and

Āk = A0(z̄), B̄k = B0(z̄),(8)

as well as

Aε(ẑk) ⊇ Āk ⊇ Âk, Bε(ẑk) ⊇ B̄k ⊇ B̂k,(9)

where ε ≥ 0 is defined as in [3] (see page 727 therein).3 Let

ε̄k := max
{

εk, max
i∈Āk

Gi(ẑk), max
i∈B̄k

Hi(ẑk)
}

.(10)

Since ε̄k ≥ εk, [3, Eq. (4)] implies that ẑk ∈ Fε̄k
[Ak, Bk] for all k. In fact, it can be

seen that ẑk remains an approximate KKT point of the subproblem [3, Eq. (3)] (in the
sense of [3, Eqs. (4)-(6)]) when εk is replaced by ε̄k and Âk, B̂k are correspondingly
replaced by Aε̄k

(ẑk), Bε̄k
(ẑk). Thus, we can modify Step 2 of the ε-active set algorithm

by possibly making this replacement when we are in case (c) and (9) holds.

The modified ε-active set algorithm for MPEC (1).

3The first containment in (9) holds whenever Θ(ẑk, vk, wk) ≤ ε, which in turn holds whenever
R(ẑk, vk, wk) is sufficiently small. By (8) and [3, Eq. (7)], the second containment in (9) holds
whenever A0(z̄) ⊇ Aεk (ẑk), which in turn holds whenever ẑk is near z̄ and εk is sufficiently small.
The other two containments can be argued similarly.
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This is the same as the ε-active set algorithm in [3, pp. 730-731], except that
when we are in case (c) in Step 2, we do the following: If

(9) holds, Āk ∩ B̄k 6= Âk ∩ B̂k, ε̄k < ε̄(11)

(ε̄ is a threshold which initially can be any positive scalar below ε), then
repeat Step 2 with εk replaced by ε̄k (and with Âk, B̂k redefined accordingly,
i.e., they are replaced by Aε̄k

(ẑk), Bε̄k
(ẑk) in Step 2, (9), (11)), and update

ε̄ ← ε̄/2. Otherwise, if εk ≤ εtol and νk ≤ νtol, then terminate; otherwise,
determine νk+1 and z̃k by [3, Eq. (14)], and proceed to Step 3.

If (11) holds, then εk < ε̄k,4 which in turn implies Āk = Aε̄k
(ẑk) and B̄k =

Bε̄k
(ẑk).5 Thus, when Step 2 is repeated, the second relation in (11) is violated.
Theorem 2.1. Under assumptions [3, A1–A3], the following results hold for the

sequence {(zk, ẑk, z̃k, εk, νk)} generated by the modified ε-active set algorithm, with
K̄ := {k : at iteration k, Step 2 is repeated}.

(a) Suppose that each M-stationary point z̄ of MPEC (1) that is not B-stationary
satisfies (4), where (v̄, w̄) satisfies (5) and R satisfies (6). If ε0 > 0, ν0 > 0, εtol =
νtol = 0, f is Lipschitz continuous with constant L on a set Z containing {zk} and
{z̃k}, and |K̄| < ∞ (respectively, |K̄| = ∞), then εk ↓ 0, νk ↓ 0, and every cluster
point of {ẑk} (respectively, {ẑk}k∈K̄) is a B-stationary point of MPEC (1).

(b) If ε0 = ν0 = 0 and f is quadratic, then there exists a k̄ ∈ {0, 1, . . .} such that
ẑk̄ is a B-stationary point of MPEC (1).

Proof. The first paragraph of the proof is identical to the proof of [3, Thm. 4.1], ex-
cept we defineK := {k : We enter Step 3 from case (a) or (b) in Step 2 at iteration k}
and K′ := {k : We enter Step 3 from case (c) in Step 2 at iteration k}. The proof of
(b) is identical to the proof of [3, Thm. 4.1(b)]. We prove (a) below.

(a) Suppose νk → 0. Then |K′| = ∞, δk → 0, and the updating formula for εk

and ε̄ imply εk → 0, so any cluster point z̄ of {ẑk}k∈K′ is an M-stationary point of
MPEC (1). First, suppose |K̄| < ∞, so that ε̄ > 0 is constant after a while. Let
{ẑk}k∈K′′ (K′′ ⊆ K′) be any subsequence converging to z̄. Since [3, Eqs. (4)-(6)] and
(2) hold for all k ∈ K′′, we have from [3, A2] and the same argument as in Section
1 that {(vk, wk)}k∈K′′ → (v̄, w̄) satisfying (5). By (6), R(z̄, v̄, w̄) = 0. Since R is
continuous, {R(ẑk, vk, wk)}k∈K′′ → 0. If z̄ is not B-stationary for (1), then the error
bound (4) would hold and this would imply that (8) and (9) hold for all k ∈ K′′
sufficiently large. Moreover, {ε̄k}k∈K′′ → 0, so that ε̄k < ε̄ for all k ∈ K′′ sufficiently
large. Thus, at each such iteration k ∈ K′′, we would have upon entering Step 3 that
Āk ∩ B̄k = Âk ∩ B̂k (since (11) must be violated). Then it would follow from (2) and
(8) that z̄ is a B-stationary point of (1), a contraction. Second, suppose |K̄| = ∞.
Then, as we discussed earlier, for each iteration k ∈ K̄, the second relation in (11) is
violated upon entering Step 3, i.e., Āk ∩ B̄k = Âk ∩ B̂k. Then, an argument similar
to the one above shows that every cluster point z̄ of {ẑk}k∈K̄ is a B-stationary point
of (1).

4If εk = ε̄k, then (10) and [3, Eq. (7)] would imply Āk ⊆ Âk and B̄k ⊆ B̂k, so (9) would yield

Āk = Âk and B̄k = B̂k, contradicting (11).
5Why? Since εk < ε̄k, we have from (10) and the definition of Āk and B̄k that

ε̄k = max

{
max
i∈Āk

Gi(ẑ
k), max

i∈B̄k
Hi(ẑ

k)

}
≤ Θ(ẑk, vk, wk).

Thus, if i 6∈ Āk, then Gi(ẑ
k) > Θ(ẑk, vk, wk) ≥ ε̄k. By (10), if i ∈ Āk, then Gi(ẑ

k) ≤ ε̄k. This shows
that Āk = Aε̄k (ẑk). An analogous argument shows that B̄k = Bε̄k (ẑk).
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Suppose instead νk 6→ 0, so that |K′| < ∞, |K| = ∞, and ν = limk→∞ νk > 0.
The remainder of the proof is identical to the proof of [3, Thm. 4.1(a)], except that,
due to εk being replaced by ε̄k in Step 2 for all iterations k ∈ K̄, instead of [3, Eq.
(22)] we have

f(zk+1) ≤ f(z̃k) + 2Lτm(εk − εk+1 + ∆k) ∀ k,

where ∆k := ε̄k if k ∈ K̄ and ∆k := 0 otherwise. Since (11) holds at each iteration
k ∈ K̄ and ε̄ is halved at each such iteration, it follows that

∑∞
k=0 ∆k =

∑
k∈K̄ ε̄k < ∞.

Then it can be argued similarly as in the proof of [3, Thm. 4.1(a)] that {f(zk)}
converges and so on.

We illustrate the assumptions of Theorem 2.1 with the following example of (1):

minimize f(z) subject to z1 ≥ 0, z2 ≥ 0, z1z2 = 0.

This example satisfies assumption [3, A2] for any ε ≥ 0. If f(z) = (z2)p (p ≥ 1),
then assumption [3, A1] also holds and each M-stationary point, which is of the form
(z̄1, 0) with z̄1 ≥ 0, is B-stationary. If f(z) = z4

1 + z2
2 − z2, then assumptions [3, A1,

A3] also hold and the M-stationary points, (0, 0) and (0, 1
2 ), are isolated with (0, 1

2 )
B-stationary. For R given by (7), the error bound (4) holds at (0, 0). However, if
f(z) = z2

2−z2, then the M-stationary point z̄ = (0, 0), with multipliers v̄ = 0, w̄ = −1,
is not B-stationary and is not isolated. Moreover, for any continuous R satisfying (6),
the error bound (4) does not hold at (0, 0). This is because, for any fixed δ > 0, (δ, 0) is
M-stationary with multipliers v = 0, w = −1, so R((δ, x2), 0,−1) → R(δ, 0), 0,−1) = 0
as x2 → 0. But ‖((δ, x2), 0,−1)− ((0, 0), 0,−1)‖ → δ as x2 → 0.
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