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Abstract In this paper we consider a bimatrix game in which the players can neither evaluate
their cost functions exactly nor estimate their opponents’ strategies accurately. To formulate such a
game, we introduce the concept of robust Nash equilibrium that results from robust optimization by
each player, and prove its existence under some mild conditions. Moreover, we show that a robust
Nash equilibrium in the bimatrix game can be characterized as a solution of a second-order cone
complementarity problem (SOCCP). Some numerical results are presented to illustrate the behavior
of robust Nash equilibria.
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1 Introduction

We consider a bimatrix game where two players attempt to minimize their own costs. Let y € R"
and z € R™ denote strategies of Players 1 and 2, respectively. Moreover, let Player 1’s cost function
be given by fi(y,2) := yT Az with cost matrix A € R%*™ and Player 2’s cost function be given by
faly, 2) := y* Bz with cost matrix B € R"*™. We suppose that the two players choose their strategies
y and z from the nonempty closed convex sets S1 C R™ and S C R™, respectively. Then, the
players determine their strategies by solving the following minimization problems with the opponents’

strategies fixed:
miniymize yT Az subject to y € S,

Yo, : (1)
minimize y Bz subject to z € Ss.
A point (7,%) satisfying ¥ € argminges, y' AZ and Z € argmin,eg, §’ Bz is called a Nash equilib-
rium [2]. Since the minimization problems (1) are convex, the problem of finding a Nash equilibrium
can be formulated as a variational inequality problem (VIP)[12]. Moreover, if S; and Sy are given
by S1 ={y € R"|gi(y) <0, i =1,...,N} and Sy = {z € R | hj(z) <0,j =1,..., M} with some
convex functions g; : #" — R and h; : R — RN, respectively, then the VIP is further reformulated as
a mixed complementarity problem (MCP), which is also called a box-constrained variational problem.
Recently, MCP has been extensively studied and many efficient algorithms have been developed for
solving it [7, 8, 25].
The concept of Nash equilibrium is premised on the accurate estimation of opponent’s strategy and
the exact evaluation of player’s own cost function. Thus Nash equilibrium may hardly represent the
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actual situation when those operations are subject to errors. To deal with such situations, we introduce
the concept of robust Nash equilibrium, which is parallel to that of robust optimization [3, 4, 5, 11].

In the field of game theory, there has been much study on games with incomplete information and
the robustness of equilibria. Harsanyi [14, 15, 16] defines a game with incomplete information as a
game where each player’s payoff function is given in a stochastic manner with its probability distri-
bution. This is one of the most popular formulations of games with incomplete information. Kayjii
and Morris [20] adopt Harsanyi’s formulation to define a concept of robust equilibria to incomplete
information. Especially, they show that games with strict equilibria do not necessarily have robust
equilibria, and the unique correlated equilibrium of a game is robust. Moreover, they introduce the
notion of p-dominance, and show that a p-dominant equilibrium is robust under an appropriate as-
sumption. Ui[26] considers the robustness of equilibria of potential games, which is a class of games
involving Monderer and Shapley’s potential function [22]. He shows that the action profile uniquely
maximizing a potential function is robust. Recently, Morris and Ui [24] have unified the above discus-
sions for p-dominant equilibria and equilibria of potential games. They define a generalized potential
function that contains Monderer and Shapley’s potential function [22] and Morris’s characteristic po-
tential function [23], and show that an action maximizing the generalized potential function is a robust
equilibrium to incomplete information.

In the above-mentioned references, the “robustness” means that an equilibrium is stable with
respect to estimation errors. On the other hand, the robust Nash equilibrium introduced in this paper
is an equilibrium that results from robust optimization [3, 4, 5, 11] by each player. More precisely,
our formulation is premised on the conditions (I)—(III) in the next section. Indeed, these conditions
are applicable to several actual problems such as dynamic economic systems based on duopolistic
competition with random disturbances, traffic equilibrium problems with incomplete information on
travel costs, etc. We note that the concept of robustness in this paper is different from those considered
in [20, 24, 26).

In what follows, we first define a robust Nash equilibrium for a bimatrix game, and discuss its
existence. Then, we show that, under certain assumptions, the robust Nash equilibrium problem can
be formulated as a second-order cone complementarity problem (SOCCP). The SOCCP is a class
of complementarity problems where the complementarity condition is associated with the Cartesian
product of second-order cones. Several methods for solving SOCCPs have been proposed recently [6,
9,13, 17, 18].

Throughout the paper, we use the following notations. For a set X, P(X) denotes the set of
all subsets of X. For a function f : R" x R™ — R, f(-,2) : R” — R and f(y,) : R — R
denote the functions with z and y, respectively, being fixed. R” denotes the nonnegative orthant
in ®", that is, R} := {& € N" |z > 0}. For a vector x € R", ||| denotes the Euclidean norm
defined by |z|| := VzTz. For a matrix M € R"*™, || M||r denotes the Frobenius norm defined by
[M||F = (32 Z;”Zl(Mij)2)1/2. I, € R™*™ denotes the identity matrix, and e, € R"™ denotes the
vector of ones. For a matrix M € R"*™, M denotes the i-th row vector and M, denotes the i-th

column vector.

2 Robust Nash equilibria and its existence

In this section, we define the robust Nash equilibrium of a bimatrix game, and give sufficient conditions
for its existence.



Throughout the paper, we assume that the following three statements hold for each player i (i =
1,2):

(I) Player 1 cannot estimate Player 2’s strategy z exactly, but can only estimate that it belongs to
a set Z(z) C R™ containing z. Similarly, Player 2 cannot estimate Player 1’s strategy y exactly,
but can only estimate that it belongs to a set Y (y) C R" containing y.

(IT) Player 1 cannot estimate his/her cost matrix exactly, but can only estimate that it belongs to a
nonempty set Dy C R™*™. Player 2 cannot estimate his/her cost matrix exactly, but can only
estimate that it belongs to a nonempty set D C ™™,

(ITII) Each player tries to minimize his/her worst cost under (I) and (II).

Now, we define the robust Nash equilibrium under the above three assumptions. To realize (III), we
define functions f; : R x ™ — R (i = 1,2) by

fi(y, z) := max {yT/Alé ‘ AeDy,ze Z(z)},

L oa (2)
foly,2) == max {37 Bz | B € Dp,je¥Y(y)}.
The functions fl(-, z) and fg(y, -) represent Player 1’s and Player 2’s worst costs, respectively, under
uncertainty as assumed in (I) and (II). Players 1 and 2 then solve the following minimization problems,
respectively:

miniymize fily,z) subject to y € Sy,

(3)

minimize fg(y,z) subject to z € Ss.
z
Now, we are in a position to define the robust Nash equilibrium.
Definition 1 Let functions fi and fo be defined by (2). If 5" € argmingeg, fi(y,z") and Z° €

argmin,cg, fo(T", 2), that is, (7", Z") is a Nash equilibrium of game (3), then (§",Z") is called a robust
Nash equilibrium of game (1).

Next, we give a condition for the existence of a robust Nash equilibrium of game (1). Note that
Y (:) and Z(-) given in (I) can be regarded as set-valued mappings. In what follows, we suppose that
Y(-), Z(-), D4 and Dp in (I) and (II) satisfy the following assumption.

Assumption A

(a) Set-valued mappings Y : R* — P(R"™) and Z : R™ — P(R™) are continuous, and
Y (y) and Z(z) are nonempty compact for any y € R™ and z € R™.

(b) Da CR™™ and Dp C R™™™ are nonempty and compact sets.

The functions fl and fg defined by (2) are well-defined under this assumption. By simple arguments
on continuity, we can show that f; and f, are continuous everywhere. Furthermore, we have the
following lemma on the convexity of fi(-,2) and fa(y,-). We omit the proof since it is trivial.

Lemma 1 Suppose that Assumption A holds. Let fi and fy be defined by (2). Then, for any fized
z € R™ and y € R, the functions fl(‘,z) and fg(y,‘) are convex.

The next lemma is a fundamental result for noncooperative n-person game [2, Theorem 9.1.1].



Lemma 2 Consider a noncooperative two-person game where cost functions are given by 61 : R™ X
R™ — R and 02 : R" x R™ — R. Suppose that functions 01 and 02 are continuous at any (y, z), and
that functions 01(-,z) and 02(y,-) are convex. Suppose that S1 and Sy are nonempty compact convex
sets. Then, the game has a Nash equilibrium.

By the above lemmas, we obtain the following theorem for the existence of a robust Nash equilibrium
of game (1)

Theorem 1 Suppose that Assumption A holds, and that S1 and Ss are nonempty compact convex
sets. Then, game (1) has a robust Nash equilibrium.

Proof. By Lemma 1, the functions fl(-, z) and fg (y,-) are convex. Moreover, as pointed out earlier,
f1 and fy are continuous everywhere. Therefore, from Lemma 2, game (3) has a Nash equilibrium.
This means, by Definition 1, that game (1) has a robust Nash equilibrium. [ ]

3 SOCCP formulation of robust Nash equilibrium

In this section, we focus on the bimatrix game where each player takes a mixed strategy, that is,
S1={yly>0, efy =1} and Sy = {2 |2z > 0, el 2 = 1}, and show that the robust Nash equilibrium
problem reduces to an SOCCP.

The SOCCP is to find a vector (£,7,¢) € R x R x R satisfying the conditions

Ks¢élnek, G(&mn¢) =0, (4)

where G : R x R x R — REx RV is a given function, & L 1 denotes £€7n = 0, and K is a closed convex
cone defined by K = K8 x K2 x - .- x Kb with ¢;-dimensional second-order cones Kb ={((1,6) €
RxRET||¢a]| < ¢1}. Since K is the set of nonnegative reals, the nonlinear complementarity problem
(NCP) is a special case of SOCCP (4) with K = K! x --- x K! and G(&,7,¢) := F(§) — n for a given
function F : R — R*.

Consider the bimatrix game where Players 1 and 2 solve the following minimization problems (5)
and (6), respectively:

miniymize yT Az subject to y >0, ely =1, (5)
minimize y’ Bz subject to z >0, el z =1. (6)
z
It is well known that a Nash equilibrium of this game is given as a solution of a mixed linear com-
plementarity problem. In fact, since z and y are fixed in (5) and (6), respectively, both problems are
linear programming problems, and their KKT conditions are given by
0<yl Az+e,s>0, egyzl,
0<zlBTy+ent>0elz=1, (7)
where s € R and ¢t € R are Lagrange multipliers associated with the equality constraints in (5) and
(6), respectively. Thus, if some (y,z) satisfies the above two KKT conditions simultaneously, then

it is a Nash equilibrium of the bimatrix game. The problem of finding such a (y, z) can be further
formulated as a linear complementarity problem (LCP) [10].



Now, we consider bimatrix games involving several types of uncertainty, and show that the robust
Nash equilibrium problem corresponding to each game reduces to an SOCCP of the form

K>M{(+q L NC+rek, C(=d (8)

with variable ¢ € R and constants M, N € R*E7) g r e R, C € R and d € R7. Note
that, by introducing new variables ¢ € ¢ and 1 € R¢, problem (8) reduces to SOCCP (4) with v = ¢+7
and G : 37 — R4 defined by

§—M(—q
G n,¢) = n—NC—r
CC—d

3.1 Uncertainty in the opponent’s strategy

In this subsection, we consider the case where each player estimates the cost matrix exactly but
opponent’s strategy uncertainly. More specifically, we make the following assumption.

Assumption 1

(@) Y(y)={y+dyeR"||oyll < py, €0y =0} and Z(2) := {2 + 6z € R™ | ||z[| < pz, e}, 02 = 0},
where py and p, are given positive constants.

(b) Da={A} and Dp = {B}, where A € R™*™ and B € R™*™ are given constant matrices.

Here, the conditions eldy = el 0z = 0 in the definitions of Y (y) and Z(z) are provided so that
el(y+6y) = el (z+62) = 1 holds from ely = el z = 1. Under this assumption, the following theorem
holds.

Theorem 2 If Assumption 1 holds, then the bimatriz game has a robust Nash equilibrium.

Proof. It is easily seen that Assumptions 1(a) and 1(b) imply Assumptions A(a) and A(b), respec-
tively. Hence, the theorem readily follows from Theorem 1. |

We now show that the robust Nash equilibrium problem can be formulated as SOCCP (8) under
Assumption 1. Player 1 solves the following minimization problem to determine his/her strategy:
minimize max {yTA(z + dz) ‘ 62| < po, el oz = 0}
y
subject to ely =1,y > 0. 9)

Since the projection of vector ATy onto hyperplane 7 := {z|el 2 = 0} can be represented as (I, —

m~te,el YATy, the cost function can be written as

fily,2) = max {yT Az + 02) \ 162]] < p, oz =0}

=yl Az + max {yTAdz } 62| < p., el oz = 0}

=y Az +p. | ATy,
where A := A(I,, — m 'epel). Hence, by introducing an auxiliary variable g € R, problem (9) can
be reduced to the following convex minimization problem:

minimize y? Az + p.yo
Yo,y

subject to [|ATy|| <yo, y >0, ey =1.



This is a second-order cone programming problem [1, 21] and its KKT conditions can be written as

the following SOCCP:
Ao 1 0 Yo
mHl 5 1 ¢ c fomtl
< A ) ( 0 A ) < y ) ’

Ry LAz —AdteseRY, ely=1, o= p.,

where A € ™ and s € R are Lagrange multipliers, and Ay € R is an auxiliary variable. In a similar
manner, the KKT conditions for Player 2 can be written as

K+l 5 (Ho) | 10 20\ ¢ jentl
o 0 B z ’
%TBzJ_BTy—BTu—{—emtE?RT, el =1, Ho = Py,
where 1 € R" and t € R are Lagrange multipliers, and pg € R is an auxiliary variable. Consequently,

the problem to find (y, z) satisfying the above two KKT conditions simultaneously can be reformulated
as SOCCP (8) with £ =2m +2n+2, 7 =4, K = K" x K™ x R x R7
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3.2 Component-wise uncertainty in the cost matrices

In the following three subsections 3.2, 3.3 and 3.4, we consider the case where each player estimates the
opponent’s strategy exactly but his/her own cost matrix uncertainly. In this subsection, we particularly
focus on the case where the uncertainty in each cost matrix occurs component-wise independently.

That is, we make the following assumption.

Assumption 2

(a) Y(y) ={y} and Z(2) = {z}.



(b) Da:={A+04A € R™™||04;;] < Ta)y =1,...,n, =1,...,m)} and Dp := {B+ 0B €
RPN 0B;j| < (Tp)ij (i=1,...,n, j=1,...,m)} with given constant matrices A € R™*™ and
B € R™*™ and positive constant matrices I' 4 € R"*™ and I'g € R"*™.

Under this assumption, we have the following theorem. We omit the proof, since it is similar to that
of Theorem 2.

Theorem 3 If Assumption 2 holds, then the bimatriz game has a robust Nash equilibrium.

From Assumption 2, together with the constraints y > 0 and z > 0, the cost function fl can be
represented as

fl(yaz) = max {nylz ‘ Ae DA}

m
T
—4TA SA 12
VAT I, 2 2 M

U i=1j=1
n m
=y Az 4+ > (Ta)iguiz
i=1j=1
_ T
=y (A+T4)z.

Analogously, we have fa(y, z) = y7 (B + T'g)z. Hence, the robust Nash equilibrium problem is simply
the problem of finding a Nash equilibrium of the bimatrix game with cost matrices A+1'4 and B+1'pg.
This problem reduces to the MCP (7) with A and B replaced by A+ I'4 and B + I'p, respectively.

3.3 Column/row-wise uncertainty in the cost matrices

In this subsection, we focus on the case where the uncertainty in matrices A and B respectively occur
row-wise independently and column-wise independently. That is, we make the following assumption.

Assumption 3
(a) Y(y) ={y} and Z(z) = {z}.

(b) Da = {A+6A[||6Af[| < (va); (G = 1,...,m)} and Dp = {B + éB|||6B]|| < (yp)i (i =
1,...,n)} with given constant matrices A € R™™ and B € R™*™ and positive constant vectors
Y4 € R™ and yp € R™.

This assumption implies that the degree of uncertainty in each player’s cost depends on the opponent’s
each pure strategy. Under this assumption, we have the following theorem. We omit the proof, since
it is similar to that of Theorem 2.

Theorem 4 If Assumption 8 holds, then the bimatriz game has a robust Nash equilibrium.

Next, we formulate the Nash equilibrium problem as an SOCCP. From Assumption 3, we have

fi(y,z) = max y" Az
A€eDy

m
T TsAC
=y Az+ max Zi Yy OAS
||6A§|<<7A>jj§ T
m
=y A2+ zllyll(va);
j=1
=y Az + 42|yl



and vgz > 0. Hence, by introducing an auxiliary variable yg € R, Player 1’s problem can be written
as
mir;in@}ize yT Az + (V5 2)wo
0,
subject to Iy <yo, y =0, epy=1.

This is a second-order cone programming problem, and its KKT conditions are given by

Kt 5 Yo L ’V}Qz c jontt
Y Az +eps— A
R A LyeRt, ely=1

with Lagrange multipliers A € £" and s € R.
In a similar way, the KKT conditions for Player 2’s minimization problem are given by

T
cmtL 5 AN . TBY c ot
z Biy+ent—u

R >pLzeRT, el z=1,

m

where p € 1™ and ¢t € R are Lagrange multipliers. Combining the above two KKT conditions, we
obtain SOCCP (8) with £ =2m +2n +2, 7 =2, K := K" x K™ x R x N7,

Yo
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3.4 General uncertainty in the cost matrices

In this subsection, we consider the general case of uncertainty in each cost matrix. That is, we make
the following assumption.

Assumption 4
(a) Y(y) ={y} and Z(z) = {z}.

(b) Dy :={A+ 54 € R™*™|||6A|lr < pa} and Dp := {B + 0B € R"*™|||6B||r < pp} with given
constant matrices A € R"*™ and B € R and positive scalars ps and pp.



Under this assumption, we also have the following theorem.
Theorem 5 If Assumption 4 holds, then the bimatriz game has a robust Nash equilibrium.

Next, we consider the SOCCP formulation of the game. First note that

f(y,z) =max{yTAz|A e Dy} =yTAz+ max yT(0A)z.

16A]lF<pa
Moreover, we have
T T
max 0A)z = max (z® vec(0A) = ||z ® A = PA z||,
G yT0A): = max (29 9) vee(84) = 2@ ylloa = palyllz]
where vec (-) denotes the vec operator that creates an nm-dimensional vector ((p§)7, ..., (p%,)T)T from
a matrix P € R with column vectors p{,...,pS,, and ® denotes Kronecker product (see Sections

4.2 and 4.3 in [19]). Hence, by introducing an auxiliary variable yo € R, Player 1’s minimization
problem reduces to the following problem:

minimize y’ Az + pallz|lvo
Yo,y

subject to |lyl| <vo, ely=1, y>0.

Again, this is a second-order cone programming problem, and its KKT conditions are given by

ICn-‘,—l 5 Yo n ,OAHZ” c ICn+1
Y Az +e,s— A ’
REo>ALyeR ely =1,

where A € R” and s € R are Lagrange multipliers. Moreover, we can show that this SOCCP is
rewritten as the following SOCCP:

et 5 Yo 1 PAZ1 ekl Ty =1,
Yy Az +e,s— A nY

z

m z Yo m n n
/C+19<1>J_<U>EIC+1, R oA LyeR (10)

with an auxiliary variable u € ™. To see this, it suffices to notice that the complementarity condition

Kt s <Z1> 1 <y0> e Kmtt (11)
z u
in (10) implies ||z = z;. This fact can be verified as follows: On one hand, (*') € K™*! implies
|z|| < z1. On the other hand, it holds that 0 = z1yo + 27 u > 2190 — || 2||||ull > 2190 — |||y, Where the
equality follows from the perpendicularity in (11), the first inequality follows from the Cauchy-Schwarz
inequality, and the last inequality follows from the condition (*°) € K™ in (11). Moreover, ey =1
and (%)) € K™ imply yo > 0. Hence, we have ||z|| > z1.
In a similar way, the KKT conditions for Player 2’s problem are given by

m+1 20 PBY1 m+1 T, _
K 9<Z>L<BTy+emt—p>€K , ez =1,

Y1 20
Kt s (y) 1 <U> e, R >pulzeRy,

9



where t € R, p € R™ and v € R" are auxiliary variables. Combining the above two KKT conditions,
we obtain SOCCP (8) with £ =3m +3n +4, 7 =2, K = K" x K+ x mHL < mHL RT x R,

Yo
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C = - ,
000 000¢e€ 000000 1

As shown thus far, the robust Nash equilibrium problems under Assumptions 1, 3 and 4 are
transformed into SOCCPs, while the robust Nash equilibrium problem under Assumption 2 reduces
to an LCP. This is a natural consequence of the fact that the Euclidean norm is used in Assumptions
1, 3 and 4 to describe the uncertainty and the absolute value is used in Assumption 2.

4 Numerical examples of robust Nash equilibria

In the previous section, we have shown that some robust Nash equilibrium problems for bimatrix
games reduce to SOCCPs. In this section, we present some numerical examples for the robust Nash
equilibria. Several methods have been proposed for solving SOCCPs. Among them, one of the most
popular approaches is to reformulate the SOCCP as an equivalent nondifferentiable minimization
problem and solve it by Newton-type method combined with a smoothing technique [6, 9, 13, 18]. In
our numerical experiments, we use an algorithm based on the methods proposed in [18].

4.1 Uncertainty in opponent’s strategy

We first study the case where only the opponents’ strategies involve uncertainty, that is, Assumption
1 holds.
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We consider the bimatrix game with cost matrices:

-1 -9 11 -5 —4 -8
A= 10 -1 4|, Bi=| -1 0o 5 |. (12)
3 10 1 3 1 4

The Nash equilibrium of the game is given by 7 = (0.4815, 0.1852, 0.3333) and z = (0.1699, 0.2628,
0.5673). Robust Nash equilibria (7",z") for various values of (p,,p.) are shown in Table 1, where
fi(g",Z") denotes the cost value of each player i = 1,2 at a robust Nash equilibrium. From the table,
we see that robust Nash equilibria (7",Z") approach the Nash equilibrium (7, %) as both p, and p,
tend to 0. Note that Players 1 and 2 estimate the opponents’ strategies more precisely as p. and p,
become smaller. However, the costs of both players for (p,, p.) = (0.5,0.5) are smaller than those for
(py>pz) = (0.01,0.01). This implies that an equilibrium may not necessarily be favorable for either of
the players even if the estimation is more precise.
Next, we consider the bimatrix game with cost matrices:

5 7 8 8 2 -7
Ay = 2 3 0|, Bo=|5 3 -3 |. (13)
1 -3 -2 9 1 -4

In this case, the Nash equilibrium comprises 7 = (0,0,1) and Z = (0,0,1), and for any pair (p,, p.) €
{0.5,0.1,0.01} x {0.5,0.1,0.01}, robust Nash equilibrium (g",z") remains the same, that is, 7" = 7y
and Z" = Z. From this result, we may expect that, if the Nash equilibrium is a pure strategy, then the
robust Nash equilibrium remains unchanged even if there is uncertainty to some extent.

4.2 Uncertainty in cost matrices

We next study the general case where the players’ cost matrices involve uncertainty, that is, Assump-
tion 4 holds.

First we consider the bimatrix game with the cost matrices A; and B; defined by (12). Robust
Nash equilibria for various values of (p4, pp) are shown in Table 2, where f;(7",Z") denotes the cost
value of robust Nash equilibrium. As in the previous case, we see from the table that precise estimation
for cost matrices does not necessarily reduce the cost at an equilibrium.

Next we consider the bimatrix game with cost matrices Ay and By defined by (13). Robust Nash
equilibria for various values of (pa,pp) are shown in Table 3, which reveals that 7" = 7 and z" = Z
hold when p4 and pp are sufficiently small. We also see from the table that precise estimation for
cost matrices does not always result in the reduction of the players’ costs at an equilibrium.

5 Concluding remarks

In this paper, we have defined the concept of robust Nash equilibrium, and studied a sufficient condition
for its existence. Moreover, we have shown that some robust Nash equilibrium problems can be
reformulated as SOCCPs. To investigate the behavior of robust Nash equilibria, we have carried out
some numerical examples.

Our study is still in the infancy, and many issues remain to be addressed. (1) One is to extend
the concept of robust Nash equilibrium to the general N-person game. For the 2-person bimatrix
game studied in this paper, it is sufficient to consider the uncertainty in the cost matrices and the

11



opponent’s strategy. To discuss general N-person games, more complicated structure should be dealt
with. (2) Another issue is to find other sufficient conditions for the existence of robust Nash equilibria.
For instance, it may be possible to consider the existence of robust Nash equilibria without assuming
the boundedness of strategy sets. (3) Theoretical study on the relation between Nash equilibrium and
robust Nash equilibrium is also worthwhile. For example, it is not known whether the uniqueness of
Nash equilibrium is inherited to robust Nash equilibrium. (4) In this paper, we have formulated several
robust Nash equilibrium problems as SOCCPs. However, we have only considered the cases where
either the cost matrices or the opponent’s strategy is uncertain for each player. It seems interesting to
study the case where both of them are uncertain, or the structure of uncertainty is more complicated.
(5) In our numerical experiments, we employed an existing algorithm for solving SOCCPs. But, there
is room for improvement of solution methods. It may be useful to develop a specialized method for
solving robust Nash equilibrium problems.

Table 1: Robust Nash equilibria for various values of p, and p.

b | p: 7 7 LT 7) | @ .7)
0.01 | 0.01 | (0.4896,0.1814,0.3290) | (0.1702,0.2697,0.5601) 3.650 —1.668
0.1 | 0.1 | (0.5630,0.1482,0.2888) | (0.1758,0.3304, 0.4938) 3.039 —2.305
0.1 | 0.5 | (0.5621, 0.1560, 0.2819) | (0.1948,0.6032, 0.2019) 0.345 —2.122
0.5 | 0.1 | (0.8891,0.0011,0.1098) | (0.1812,0.3272,0.4916) 2.506 —5.152
0.5 | 0.5 | (0.8840,0.0432,0.0729) | (0.2129,0.5929,0.1942) | —2.424 —4.232

Table 2: Robust Nash equilibria for various values of p4 and pp (cost matrices Ay and By)

pA | PB 7’ z" L@z | L7
0.1 | 0.1 | (0.4841,0.1797,0.3362) | (0.1721, 0.2623, 0.5656) 3.700 —1.615
1 | (0.5097,0.1376,0.3527) | (0.1969, 0.2552, 0.5479) 3.640 —1.835
10 | (1.0000, 0.0000, 0.0000) | (0.2931,0.2326, 0.4743) 2.830 —6.190
10 1 (0.5083, 0.1950, 0.2967) | (0.3497,0.2453, 0.4050) 3.074 —1.843
10 | 10 | (0.5934,0.1961,0.2105) | (0.3326,0.3002, 0.3672) 2.396 —2.565

Table 3: Robust Nash equilibria for various values of p4 and pp (cost matrices Ay and Bs)

pA | pPB v z" fT,Z7) | f(77,7")
0.1 | 0.1 | (0.0000,0.0000, 1.0000) | (0.0000,0.0000, 1.0000) | —2.000 —4.000
1 (0.0000, 0.0000, 1.0000) | (0.0000, 0.0000, 1.0000) | —2.000 —4.000
10 | (0.0000, 0.0000, 1.0000) | (0.0000,0.3110,0.6890) | —2.311 —2.445
10 1 | (0.0000, 0.4286,0.5714) | (0.0000, 0.0000, 1.0000) | —1.143 —3.571
10 | 10 | (0.0000,0.3783,0.6217) | (0.0000,0.1935,0.8065) | —1.144 —2.581
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