Papers by N. Yamashita

  1. K. Ueda and N. Yamashita, Global complexity bound analysis of the Levenberg-Marquardt method for nonsmooth equations and its application to the nonlinear complementarity problem, Journal of Optimization Theory and Applications, to appear.
  2. Y.-H. Dai and N. Yamashita,Convergence analysis of sparse quasi-Newton updates with positive definite matrix completion for two-dimensional functions, Numerical Analysis, Control and Optimization 1 (2011), pp. 61-69.
  3. J. Takaki and N. Yamashita, A derivative-free trust-region algorithm for unconstained optimization with controlled error, Numerical Analysis, Control and Optimization 1 (2011), pp. 117-145.
  4. K. Ueda and N. Yamashita, On a global complexity bound of the Levenberg-Marquardt Method, Journal of Optimization Theory and Applications 147 (2010), pp. 443-453.
  5. K. Ueda and N. Yamashita, Convergence properties of the regularized Newton method for the unconstrained nonconvex optimization, Applied Mathematics and Optimization 62 (2010), pp. 27--46.
  6. R.P. Agdeppa, N. Yamashita and M. Fukushima, Convex expected residual models for stochastic affine variational inequality problems and its application to the traffic equilibrium problem, Pacific Journal of Optimization 6 (2010), pp. 3-19.
  7. T. Seki, N. Yamashita and K. Kawamoto, New local search methods for improving the Lagrangian-relaxation-based Unit commitment solution, IEEE Transactions on Power Systems 25 (2010), pp. 272-283.
  8. N. Yamashita, Sparse quasi-Newton updates with positive definite matrix completion, Mathematical Programming 115 (2008), pp. 1-30.
  9. R.P. Agdeppa, N. Yamashita and M. Fukushima, An implicit programming approach for the road pricing problem with nonadditive route costs, Journal of Industrial and Management Optimization 4 (2008), pp. 183-197.
  10. R.P. Agdeppa, N. Yamashita and M. Fukushima, The traffic equilibrium problem with nonadditive costs and its monotone mixed complementarity problem formulation, Transportation research B 41 (2007), pp. 862-874.
  11. 池端祐介,山下信雄,「スペースデブリ観測レーダの操作計画に対する最長路アプローチ」,システム制御情報学会論文誌 20 (2007), pp. 205-215.
  12. N. Yamashita and M. Fukushima, On the level-boundedness of the natural residual function for variational inequality problems, Pacific Journal of Optimization 1 (2005), pp. 625-630.
  13. S. Hayashi, N. Yamashita and M. Fukushima, Robust Nash equilibria and second-order cone complementarity problems, Journal of Nonlinear and Convex Analysis 6 (2005), pp. 283-296.
  14. S. Hayashi, T. Yamaguchi, N. Yamashita and M. Fukushima, A matrix splitting method for symmetric affine second-order cone complementarity problems, Journal of Computational and Applied Mathematics 175 (2005), pp. 335-353.
  15. S. Hayashi, N. Yamashita and M. Fukushima, A combined smoothing and regularization method for monotone second-order cone complementarity problems, SIAM Journal on Optimization 15 (2005), pp. 593-615.
  16. N. Yamashita and Z.-Q. Luo, A nonlinear complementarity approach to multiuser power control for digital subscriber lines, Optimization Methods and Software 19 (2004), pp. 633-652
  17. C. Kanzow, N. Yamashita and M. Fukushima, Levenberg-Marquardt methods for constrained nonlinear equations with strong local convergence properties, Journal of Computational and Applied Mathematics 172 (2004), pp. 375-397
  18. D.H. Li, M. Fukushima, L. Qi and N. Yamashita, Regularized Newton methods for convex minimization problems with singular solutions, Computational Optimization and Applications 28 (2004), pp. 131-147.
  19. N. Yamashita, H. Dan and M. Fukushima, On the identification of degenerate indices in the nonlinear complementarity problem with the proximal point algorithm, Mathematical Programming 99 (2004), pp. 377-397.

  20. H. Moriyama, N. Yamashita and M. Fukushima, The incremental Gauss-Newton algorithm with adaptive  stepsize rule, Computational Optimization and Applications 26 (2003), pp. 107-141.

  21. R.S. Bipasha, K. Yamada, N. Yamashita and M. Fukushima, A linearly convergent descent method for strongly monotone variational inequality problems, Journal of Nonlinear and Convex Analysis 4 (2003), pp. 15-23.
  22. H. Dan, N. Yamashita and M. Fukushima, A superlinearly convergent algorithm for the monotone complementarity problem without uniqueness and nondegeneracy conditions,  Mathematics of Operations Research 27 (2002), pp. 743-753. 

  23. H. Dan, N. Yamashita and M. Fukushima, Convergence properties of the inexact Levenberg-Marquardt method under local error bound, Optimization Methods and Software 17 (2002), pp. 605-626.

  24. N. Yamashita and M. Fukushima, On the rate of convergence of the Levenberg-Marquardt method,  Computing [Suppl] 15 (2001), pp. 227-238. 

  25. N. Yamashita, C. Kanzow, T. Morimoto and M. Fukushima, An infeasible interior proximal method convex programming problems with linear constraints, Journal of Nonlinear and Convex Analysis 2 (2001), pp. 139-156. 

  26. N. Yamashita, J. Imai and M. Fukushima, The proximal point algorithm for the P_0 complementarity problem,  Complementarity: Applications, Algorithms and Extensions, M.C. Ferris, O.L. Mangasarian and J.-S. Pang (eds.), Kluwer Academic Publishers, 2000, pp. 361-379.
  27. N. Yamashita and M. Fukushima, The proximal point algorithm with genuine superlinear convergence for the monotone complementarity problem,  SIAM Journal on Optimization 11 (2001), pp. 364-379.

  28. D. Li, N. Yamashita and M. Fukushima, A nonsmooth equation based BFGS method for solving KKT systems in mathematical programming, Journal of Optimization Theory and Applications 109 (2001), pp. 123-167.

  29. K. Yamada, N. Yamashita and M. Fukushima, A new derivative-free descent method for the nonlinear complementarity problem, Nonlinear Optimization and Related Topics, G. Di Pillo and F. Giannessi, eds., Kluwer Academic Publishers, 2000, pp. 463-487..

  30.  M. Shibata, N. Yamashita and M. Fukushima, The extended semidefinite linear complementarity problem: A reformulation approach, Nonlinear Analysis and Convex Analysis, W. Takahashi and T. Tanaka (eds.), World Scientific, Singapore, 1999, pp. 326-332.

  31.  N. Yamashita, Some properties of the restricted NCP-functions for the nonlinear complementarity problem, Journal of Optimization Theory and Applications,  98 (1998), pp. 701-717.

  32.  N. Yamashita and M. Fukushima, A new merit function and a descent method for semidefinite complementarity problems,  Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, M. Fukushima and L. Qi (eds.), Kluwer Academic Publishers B.V., 1998, pp. 405-420.

  33.  C. Kanzow, N. Yamashita and M. Fukushima, New NCP-functions and their properties, Journal of Optimization Theory and Applications 94 (1997), pp. 115-135.

  34.  N. Yamashita, K. Taji and M. Fukushima, Unconstrained optimization reformulations of variational inequality problems, Journal of Optimization Theory and Applications 92 (1997), pp. 439-456.

  35.  N. Yamashita and M. Fukushima, Equivalent unconstrained minimization and global error bounds for variational inequality problems, SIAM Journal on Control and Optimization 35 (1997), pp. 273-284.

  36.  N. Yamashita and M. Fukushima, Modified Newton methods for solving a semismooth reformulation of monotone complementarity problems, Mathematical Programming 76 (1997), pp. 469-491.

  37.  P. Tseng, N. Yamashita and M. Fukushima, Equivalence of complementarity problems to differentiable minimization: A unified approach, SIAM Journal on Optimization 6 (1996), pp. 446-460.

  38.  N. Yamashita and M. Fukushima, On stationary points of the implicit Lagrangian for nonlinear complementarity problems, Journal of Optimization Theory and Applications 84 (1995), pp. 653-663.



著書



著書(分担執筆)



解説論文等

  1. 山下信雄,準ニュートン法の研究とその展望(OR研究の最前線),オペレーションズ・リサーチ,55 (2010), 243-247.
  2. 山下信雄, 福島雅夫, 非線形相補性問題に対する近接点法, 応用数理, 10 (2000), pp. 12-24.
  3. 福島雅夫, 山下信雄, 相補性問題と変分不等式問題のメリット関数, オペレーションズ・リサーチ, 42 (1997), pp. 423-428.


公開スライド

Return to home page of N. Yamashita.

< Last update: August 8, 2011>